
Cat. No. W394-E1-03

SYSMAC CS/CJ Series
PROGRAMMING MANUAL

CS1G/H-CPU@@-EV1
CS1G/H-CPU@@H
CJ1G-CPU@@
CJ1G/H-CPU@@H
CJ1M-CPU@@
Programmable Controllers

��������������	
�	�
���������@@����
���������@@��
�������@@�
���������@@�
�������@@�
�
��
������	�����
���	
�
�
��
�������������
���������	
����

iv

�������
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

!DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

!WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

!Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

�	
����������
��������
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers to
an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PLC” means Programmable Controller. “PC” is used, however, in some Program-
ming Device displays to mean Programmable Controller.

�����������
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1,2,3... �� ������	
����	�������
����	�������	�
���������������
���
�����
����	���
	��

� OMRON, 2001
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or
by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of
OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is con-
stantly striving to improve its high-quality products, the information contained in this manual is subject to change without
notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility
for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in
this publication.
v

vi

TABLE OF CONTENTS
PRECAUTIONS . xi
1 Intended Audience . xii
2 General Precautions . xii
3 Safety Precautions. xii
4 Operating Environment Precautions . xiv
5 Application Precautions . xiv
6 Conformance to EC Directives . xix

SECTION 1
CPU Unit Operation. 1

1-1 Initial Setup (CS1 CPU Units Only) . 2
1-2 Using the Internal Clock (CS1 CPU Units Only) . 5
1-3 Internal Structure of the CPU Unit . 6
1-4 Operating Modes. 8
1-5 Programs and Tasks. 12
1-6 Description of Tasks . 14

SECTION 2
Programming . 19

2-1 Basic Concepts . 20
2-2 Precautions . 54
2-3 Checking Programs . 63

SECTION 3
Instruction Functions . 69

3-1 Sequence Input Instructions . 70
3-2 Sequence Output Instructions . 72
3-3 Sequence Control Instructions . 75
3-4 Timer and Counter Instructions. 78
3-5 Comparison Instructions . 82
3-6 Data Movement Instructions . 86
3-7 Data Shift Instructions . 89
3-8 Increment/Decrement Instructions . 93
3-9 Symbol Math Instructions . 94
3-10 Conversion Instructions. 99
3-11 Logic Instructions . 105
3-12 Special Math Instructions . 107
3-13 Floating-point Math Instructions . 108
3-14 Double-precision Floating-point Instructions (CS1-H, CJ1-H, or CJ1M Only). 112
3-15 Table Data Processing Instructions . 116
3-16 Data Control Instructions . 120
3-17 Subroutine Instructions . 123
3-18 Interrupt Control Instructions . 125
3-19 High-speed Counter and Pulse Output Instructions (CJ1M-CPU22/23 Only) 127
3-20 Step Instructions . 128
3-21 Basic I/O Unit Instructions . 129
3-22 Serial Communications Instructions . 130
3-23 Network Instructions. 131
3-24 File Memory Instructions . 133
3-25 Display Instructions . 134
vii

TABLE OF CONTENTS

3-26 Clock Instructions . 134
3-27 Debugging Instructions . 135
3-28 Failure Diagnosis Instructions. 136
3-29 Other Instructions . 137
3-30 Block Programming Instructions . 138
3-31 Text String Processing Instructions. 144
3-32 Task Control Instructions . 147

SECTION 4
Tasks . 149

4-1 Task Features. 150
4-2 Using Tasks . 158
4-3 Interrupt Tasks. 168
4-4 Programming Device Operations for Tasks . 180

SECTION 5
File Memory Functions . 183

5-1 File Memory . 184
5-2 Manipulating Files . 199
5-3 Using File Memory . 226

SECTION 6
Advanced Functions . 233

6-1 Cycle Time/High-speed Processing . 235
6-2 Index Registers . 252
6-3 Serial Communications . 261
6-4 Changing the Timer/Counter PV Refresh Mode. 276
6-5 Using a Scheduled Interrupt as a High-precision Timer (CJ1M Only). 284
6-6 Startup Settings and Maintenance. 286
6-7 Diagnostic Functions. 296
6-8 CPU Processing Modes. 301
6-9 Peripheral Servicing Priority Mode . 306
6-10 Battery-free Operation . 312
6-11 Other Functions. 314

SECTION 7
Program Transfer, Trial Operation, and Debugging 317

7-1 Program Transfer. 318
7-2 Trial Operation and Debugging. 318

Appendices
A PLC Comparison Charts: CJ-series, CS-series, C200HG/HE/HX,

CQM1H, CVM1, and CV-series PLCs . 327

B Changes from Previous Host Link Systems . 349

Index . 353

Revision History . 359
viii

�����������	������
This manual describes the programming of the CS1G/H-CPU@@-EV1 and CJ1G/H/M-CPU@@ CPU
Units for CS/CJ-series Programmable Controllers (PLCs) and includes the sections described on the
following page. The CS Series and CJ Series are subdivided as shown in the following table.

Please read this manual and all related manuals listed in the table on the next page and be sure you
understand information provided before attempting to install or use CS1G/H-CPU@@-EV1 or CJ1G/H/
M-CPU@@ CPU Units in a PLC System.

This manual contains the following sections.

Section 1 describes the basic structure and operation of the CPU Unit.

Section 2 describes basic information required to write, check, and input programs.

Section 3 outlines the instructions that can be used to write user programs.

Section 4 describes the operation of tasks.

Section 5 describes the functions used to manipulate file memory.

Section 6 provides details on advanced functions: Cycle time/high-speed processing, index registers,
serial communications, startup and maintenance, diagnostic and debugging, Programming Devices,
and CJ Basic I/O Unit input response time settings.

Section 7 describes the processes used to transfer the program to the CPU Unit and the functions that
can be used to test and debug the program.

The Appendices provide a comparison of CS/CJ-series, restrictions in using C200H Special I/O Units,
and changes made to Host Link Systems.

Unit CS Series CJ Series

CPU Units CS1-H CPU Units: CS1H-CPU@@H
CS1G-CPU@@H

CJ1-H CPU Units: CJ1H-CPU@@H
CJ1G-CPU@@H

CS1 CPU Units: CS1H-CPU@@-EV1
CS1G-CPU@@-EV1

CJ1 CPU Units: CJ1G-CPU@@-EV1
CJ1M CPU Units: CJ1M-CPU@@

Basic I/O Units CS-series Basic I/O Units CJ-series Basic I/O Units

Special I/O Units CS-series Special I/O Units CJ-series Special I/O Units

CPU Bus Units CS-series CPU Bus Units CJ-series CPU Bus Units

Power Supply Units CS-series Power Supply Units CJ-series Power Supply Units
ix

About this Manual, Continued
Name Cat. No. Contents

SYSMAC CS/CJ Series
CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H, CJ1G-
CPU@@, CJ1G/H-CPU@@H
Programmable Controllers Programming Manual

W394 This manual describes programming and other
methods to use the functions of the CS/CJ-series
PLCs. (This manual)

SYSMAC CS Series
CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H
Programmable Controllers Operation Manual

W339 Provides an outlines of and describes the design,
installation, maintenance, and other basic opera-
tions for the CS-series PLCs.

SYSMAC CJ Series
CJ1G-CPU@@, CJ1G/H-CPU@@H
Programmable Controllers Operation Manual

W393 Provides an outlines of and describes the design,
installation, maintenance, and other basic opera-
tions for the CJ-series PLCs.

SYSMAC CJ Series
CJ1M-CPU22/23
Built-in I/O Functions Operation Manual

W395 Describes the functions of the built-in I/O for
CJ1M CPU Units.

SYSMAC CS/CJ Series
CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H, CJ1G-
CPU@@, CJ1G/H-CPU@@H
Programmable Controllers Instructions Reference Manual

W340 Describes the ladder diagram programming
instructions supported by CS/CJ-series PLCs.

SYSMAC CS/CJ Series
CQM1H-PRO01-E, C200H-PRO27-E, CQM1-PRO01-E
Programming Consoles Operation Manual

W341 Provides information on how to program and
operate CS/CJ-series PLCs using a Programming
Console.

SYSMAC CS/CJ Series
CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H, CJ1G-
CPU@@, CJ1G/H-CPU@@H, CS1W-SCB21/41, CS1W-
SCU21, CJ1W-SCU41
Communications Commands Reference Manual

W342 Describes the C-series (Host Link) and FINS
communications commands used with CS/CJ-
series PLCs.

SYSMAC WS02-CXP@@-E
CX-Programmer User Manual

W361 Provide information on how to use the CX-Pro-
grammer, a programming device that supports
the CS/CJ-series PLCs, and the CX-Net con-
tained within CX-Programmer.

SYSMAC WS02-CXP@@-E
CX-Server User Manual

W362

SYSMAC CS/CJ Series
CS1W-SCB21/41, CS1W-SCU21, CJ1W-SCU41
Serial Communications Boards/Units Operation Manual

W336 Describes the use of Serial Communications Unit
and Boards to perform serial communications
with external devices, including the usage of stan-
dard system protocols for OMRON products.

SYSMAC WS02-PSTC1-E
CX-Protocol Operation Manual

W344 Describes the use of the CX-Protocol to create
protocol macros as communications sequences
to communicate with external devices.

SYSMAC CS/CJ Series
CJ1W-ETN01/ENT11, CJ1W-ETN11 Ethernet Unit
Operation Manual

W343 Describes the installation and operation of CJ1W-
ETN01, CJ1W-ENT11, and CJ1W-ETN11 Ether-
net Units.

!WARNING Failure to read and understand the information provided in this manual may result in per-
sonal injury or death, damage to the product, or product failure. Please read each section
in its entirety and be sure you understand the information provided in the section and
related sections before attempting any of the procedures or operations given.
x

xi

PRECAUTIONS

This section provides general precautions for using the CS/CJ-series Programmable Controllers (PLCs) and related devices.

The information contained in this section is important for the safe and reliable application of Programmable
Controllers. You must read this section and understand the information contained before attempting to set up or
operate a PLC system.

1 Intended Audience . xii

2 General Precautions . xii

3 Safety Precautions. xii

4 Operating Environment Precautions . xiv

5 Application Precautions . xiv

6 Conformance to EC Directives . xix

6-1 Applicable Directives . xix

6-2 Concepts . xix

6-3 Conformance to EC Directives . xix

6-4 Relay Output Noise Reduction Methods . xx

Intended Audience 1
1 Intended Audience
This manual is intended for the following personnel, who must also have
knowledge of electrical systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.

• Personnel in charge of designing FA systems.

• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifica-
tions described in the operation manuals.

Before using the product under conditions which are not described in the
manual or applying the product to nuclear control systems, railroad systems,
aviation systems, vehicles, combustion systems, medical equipment, amuse-
ment machines, safety equipment, and other systems, machines, and equip-
ment that may have a serious influence on lives and property if used
improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide
the systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the Unit. Be
sure to read this manual before attempting to use the Unit and keep this man-
ual close at hand for reference during operation.

!WARNING It is extremely important that a PLC and all PLC Units be used for the speci-
fied purpose and under the specified conditions, especially in applications that
can directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PLC System to the above-mentioned appli-
cations.

3 Safety Precautions

!WARNING The CPU Unit refreshes I/O even when the program is stopped (i.e., even in
PROGRAM mode). Confirm safety thoroughly in advance before changing the
status of any part of memory allocated to I/O Units, Special I/O Units, or CPU
Bus Units. Any changes to the data allocated to any Unit may result in unex-
pected operation of the loads connected to the Unit. Any of the following oper-
ation may result in changes to memory status.

• Transferring I/O memory data to the CPU Unit from a Programming
Device.

• Changing present values in memory from a Programming Device.

• Force-setting/-resetting bits from a Programming Device.

• Transferring I/O memory files from a Memory Card or EM file memory to
the CPU Unit.

• Transferring I/O memory from a host computer or from another PLC on a
network.

!WARNING Do not attempt to take any Unit apart while the power is being supplied. Doing
so may result in electric shock.
xii

Safety Precautions 3
!WARNING Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

!WARNING Do not attempt to disassemble, repair, or modify any Units. Any attempt to do
so may result in malfunction, fire, or electric shock.

!WARNING Do not touch the Power Supply Unit while power is being supplied or immedi-
ately after power has been turned OFF. Doing so may result in electric shock.

!WARNING Provide safety measures in external circuits (i.e., not in the Programmable
Controller), including the following items, to ensure safety in the system if an
abnormality occurs due to malfunction of the PLC or another external factor
affecting the PLC operation. Not doing so may result in serious accidents.

• Emergency stop circuits, interlock circuits, limit circuits, and similar safety
measures must be provided in external control circuits.

• The PLC will turn OFF all outputs when its self-diagnosis function detects
any error or when a severe failure alarm (FALS) instruction is executed.
As a countermeasure for such errors, external safety measures must be
provided to ensure safety in the system.

• The PLC outputs may remain ON or OFF due to deposition or burning of
the output relays or destruction of the output transistors. As a counter-
measure for such problems, external safety measures must be provided
to ensure safety in the system.

• When the 24-V DC output (service power supply to the PLC) is over-
loaded or short-circuited, the voltage may drop and result in the outputs
being turned OFF. As a countermeasure for such problems, external
safety measures must be provided to ensure safety in the system.

!Caution Confirm safety before transferring data files stored in the file memory (Mem-
ory Card or EM file memory) to the I/O area (CIO) of the CPU Unit using a
peripheral tool. Otherwise, the devices connected to the output unit may mal-
function regardless of the operation mode of the CPU Unit.

!Caution Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes. Abnormal operation may
result in serious accidents.

!Caution Interlock circuits, limit circuits, and similar safety measures in external circuits
(i.e., not in the Programmable Controller) must be provided by the customer.
Abnormal operation may result in serious accidents.

!Caution Execute online edit only after confirming that no adverse effects will be
caused by extending the cycle time. Otherwise, the input signals may not be
readable.

!Caution Confirm safety at the destination node before transferring a program to
another node or changing contents of the I/O memory area. Doing either of
these without confirming safety may result in injury.
xiii

Operating Environment Precautions 4
!Caution Tighten the screws on the terminal block of the AC Power Supply Unit to the
torque specified in the operation manual. The loose screws may result in
burning or malfunction.

4 Operating Environment Precautions

!Caution Do not operate the control system in the following locations:

• Locations subject to direct sunlight.

• Locations subject to temperatures or humidity outside the range specified
in the specifications.

• Locations subject to condensation as the result of severe changes in tem-
perature.

• Locations subject to corrosive or flammable gases.

• Locations subject to dust (especially iron dust) or salts.

• Locations subject to exposure to water, oil, or chemicals.

• Locations subject to shock or vibration.

!Caution Take appropriate and sufficient countermeasures when installing systems in
the following locations:

• Locations subject to static electricity or other forms of noise.

• Locations subject to strong electromagnetic fields.

• Locations subject to possible exposure to radioactivity.

• Locations close to power supplies.

!Caution The operating environment of the PLC System can have a large effect on the
longevity and reliability of the system. Improper operating environments can
lead to malfunction, failure, and other unforeseeable problems with the PLC
System. Be sure that the operating environment is within the specified condi-
tions at installation and remains within the specified conditions during the life
of the system.

5 Application Precautions
Observe the following precautions when using the PLC System.

• You must use the CX-Programmer (programming software that runs on
Windows) if you need to program more than one task. A Programming
Console can be used to program only one cyclic task plus interrupt tasks.
A Programming Console can, however, be used to edit multitask pro-
grams originally created with the CX-Programmer.

• There are restrictions in the areas and addresses that can be accessed in
I/O memory of the CS-series CS1 CPU Units when using the C200H Spe-
cial I/O Units in combination with the following functions.

• There are restrictions in data transfer with the CPU Unit when pro-
gramming transfers inside an ASCII Unit using the PLC READ, PLC
WRITE, and similar commands.

• There are restrictions in data transfer with the CPU Unit for allocated
bits and DM area specifications (areas and addresses for source and
destination specifications).
xiv

Application Precautions 5
• The DeviceNet (CompoBus/D) output area for a DeviceNet (Compo-
Bus/D) Master Unit (CIO 0050 to CIO 0099) overlaps with the I/O bit
area (CIO 0000 to CIO 0319). Do not use automatic allocations for I/O
in any system where allocations to the DeviceNet system will overlap
with allocations to I/O Units. Instead, use a Programming Device or the
CX-Programmer to manually allocate I/O for the DeviceNet devices,
being sure that the same words and bits are not allocated more than
once, and transfer the resulting I/O table to the CPU Unit. If DeviceNet
communications are attempted when the same bits are allocated to
both DeviceNet devices and I/O Units (which can occur even if auto-
matic allocation is used), the DeviceNet devices and I/O Units may
both exhibit faulty operation.

• Special bits and flags for PLC Link Units (CIO 0247 to CIO 0250) over-
lap with the I/O bit area (CIO 0000 to CIO 0319). Do not use automatic
allocations for I/O in any system where allocations to the I/O Units will
overlap with allocations to I/O Units. Instead, use a Programming De-
vice or the CX-Programmer to manually allocate I/O to I/O Units, being
sure that the special bits and flags for PLC Link Units are not used, and
transfer the resulting I/O table to the CPU Unit. If operation is attempt-
ed when the special bits and flags for PLC Link Units are also allocated
to I/O Units (which can occur even if automatic allocation is used), the
PLC Link Units and I/O Units may both exhibit faulty operation.

!WARNING Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

• Always connect to a ground of 100 � or less when installing the Units. Not
connecting to a ground of 100 ��or less may result in electric shock.

• A ground of 100 � or less must be installed when shorting the GR and LG
terminals on the Power Supply Unit.

• Always turn OFF the power supply to the PLC before attempting any of
the following. Not turning OFF the power supply may result in malfunction
or electric shock.

• Mounting or dismounting Power Supply Units, I/O Units, CPU Units, In-
ner Boards, or any other Units.

• Assembling the Units.

• Setting DIP switches or rotary switches.

• Connecting cables or wiring the system.

• Connecting or disconnecting the connectors.

!Caution Failure to abide by the following precautions could lead to faulty operation of
the PLC or the system, or could damage the PLC or PLC Units. Always heed
these precautions.

• A CJ-series CPU Unit is shipped with the battery installed and the time
already set on the internal clock. It is not necessary to clear memory or
set the clock before application, as it is for the CS-series CS1 CPU Units.

• When using a CS-series CS1 CPU Unit for the first time, install the
CS1W-BAT1 Battery provided with the Unit and clear all memory areas
from a Programming Device before starting to program. When using the
internal clock, turn ON power after installing the battery and set the clock
xv

Application Precautions 5
from a Programming Device or using the DATE(735) instruction. The clock
will not start until the time has been set.

• The user program and parameter area data in CS1-H, CJ1-H, or CJ1M
CPU Units is backed up in the built-in flash memory. The BKUP indicator
will light on the front of the CPU Unit when the backup operation is in
progress. Do not turn OFF the power supply to the CPU Unit when the
BKUP indicator is lit. The data will not be backed up is power is turned
OFF.

• When the CPU Unit is shipped from the factory, the PLC Setup is set so
that the CPU Unit will start in the operating mode set on the Programming
Console mode switch. When a Programming Console is not connected, a
CS-series CS1 CPU Unit will start in PROGRAM mode, but a CS-series
CS1-H CPU Unit and CJ-series CPU Unit will start in RUN mode and
operation will begin immediately. Do not advertently or inadvertently allow
operation to start without confirming that it is safe.

• When creating an AUTOEXEC.IOM file from a Programming Device (a
Programming Console or the CX-Programmer) to automatically transfer
data at startup, set the first write address to D20000 and be sure that the
size of data written does not exceed the size of the DM Area. When the
data file is read from the Memory Card at startup, data will be written in
the CPU Unit starting at D20000 even if another address was set when
the AUTOEXEC.IOM file was created. Also, if the DM Area is exceeded
(which is possible when the CX-Programmer is used), the remaining data
will be written to the EM Area.

• Always turn ON power to the PLC before turning ON power to the control
system. If the PLC power supply is turned ON after the control power sup-
ply, temporary errors may result in control system signals because the
output terminals on DC Output Units and other Units will momentarily turn
ON when power is turned ON to the PLC.

• Fail-safe measures must be taken by the customer to ensure safety in the
event that outputs from Output Units remain ON as a result of internal cir-
cuit failures, which can occur in relays, transistors, and other elements.

• Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal
lines, momentary power interruptions, or other causes.

• Interlock circuits, limit circuits, and similar safety measures in external cir-
cuits (i.e., not in the Programmable Controller) must be provided by the
customer.

• Do not turn OFF the power supply to the PLC when data is being trans-
ferred. In particular, do not turn OFF the power supply when reading or
writing a Memory Card. Also, do not remove the Memory Card when the
BUSY indicator is lit. To remove a Memory Card, first press the memory
card power supply switch and then wait for the BUSY indicator to go out
before removing the Memory Card.

• If the I/O Hold Bit is turned ON, the outputs from the PLC will not be
turned OFF and will maintain their previous status when the PLC is
switched from RUN or MONITOR mode to PROGRAM mode. Make sure
that the external loads will not produce dangerous conditions when this
occurs. (When operation stops for a fatal error, including those produced
with the FALS(007) instruction, all outputs from Output Unit will be turned
OFF and only the internal output status will be maintained.)

• The contents of the DM, EM, and HR Areas in the CPU Unit are backed
up by a Battery. If the Battery voltage drops, this data may be lost. Provide
xvi

Application Precautions 5
countermeasures in the program using the Battery Error Flag (A40204) to
re-initialize data or take other actions if the Battery voltage drops.

• When supplying power at 200 to 240 V AC with a CS-series PLC, always
remove the metal jumper from the voltage selector terminals on the Power
Supply Unit (except for Power Supply Units with wide-range specifica-
tions). The product will be destroyed if 200 to 240 V AC is supplied while
the metal jumper is attached.

• Always use the power supply voltages specified in the operation manuals.
An incorrect voltage may result in malfunction or burning.

• Take appropriate measures to ensure that the specified power with the
rated voltage and frequency is supplied. Be particularly careful in places
where the power supply is unstable. An incorrect power supply may result
in malfunction.

• Install external breakers and take other safety measures against short-cir-
cuiting in external wiring. Insufficient safety measures against short-cir-
cuiting may result in burning.

• Do not apply voltages to the Input Units in excess of the rated input volt-
age. Excess voltages may result in burning.

• Do not apply voltages or connect loads to the Output Units in excess of
the maximum switching capacity. Excess voltage or loads may result in
burning.

• Disconnect the functional ground terminal when performing withstand
voltage tests. Not disconnecting the functional ground terminal may result
in burning.

• Install the Units properly as specified in the operation manuals. Improper
installation of the Units may result in malfunction.

• With CS-series PLCs, be sure that all the Unit and Backplane mounting
screws are tightened to the torque specified in the relevant manuals.
Incorrect tightening torque may result in malfunction.

• Be sure that all terminal screws, and cable connector screws are tight-
ened to the torque specified in the relevant manuals. Incorrect tightening
torque may result in malfunction.

• Leave the label attached to the Unit when wiring. Removing the label may
result in malfunction if foreign matter enters the Unit.

• Remove the label after the completion of wiring to ensure proper heat dis-
sipation. Leaving the label attached may result in malfunction.

• Use crimp terminals for wiring. Do not connect bare stranded wires
directly to terminals. Connection of bare stranded wires may result in
burning.

• Wire all connections correctly.

• Double-check all wiring and switch settings before turning ON the power
supply. Incorrect wiring may result in burning.

• Mount Units only after checking terminal blocks and connectors com-
pletely.

• Be sure that the terminal blocks, Memory Units, expansion cables, and
other items with locking devices are properly locked into place. Improper
locking may result in malfunction.

• Check switch settings, the contents of the DM Area, and other prepara-
tions before starting operation. Starting operation without the proper set-
tings or data may result in an unexpected operation.
xvii

Application Precautions 5
• Check the user program for proper execution before actually running it on
the Unit. Not checking the program may result in an unexpected opera-
tion.

• Confirm that no adverse effect will occur in the system before attempting
any of the following. Not doing so may result in an unexpected operation.

• Changing the operating mode of the PLC.

• Force-setting/force-resetting any bit in memory.

• Changing the present value of any word or any set value in memory.

• Resume operation only after transferring to the new CPU Unit the con-
tents of the DM Area, HR Area, and other data required for resuming
operation. Not doing so may result in an unexpected operation.

• Do not pull on the cables or bend the cables beyond their natural limit.
Doing either of these may break the cables.

• Do not place objects on top of the cables or other wiring lines. Doing so
may break the cables.

• Do not use commercially available RS-232C personal computer cables.
Always use the special cables listed in this manual or make cables
according to manual specifications. Using commercially available cables
may damage the external devices or CPU Unit.

• When replacing parts, be sure to confirm that the rating of a new part is
correct. Not doing so may result in malfunction or burning.

• Before touching a Unit, be sure to first touch a grounded metallic object in
order to discharge any static build-up. Not doing so may result in malfunc-
tion or damage.

• When transporting or storing circuit boards, cover them in antistatic mate-
rial to protect them from static electricity and maintain the proper storage
temperature.

• Do not touch circuit boards or the components mounted to them with your
bare hands. There are sharp leads and other parts on the boards that
may cause injury if handled improperly.

• Do not short the battery terminals or charge, disassemble, heat, or incin-
erate the battery. Do not subject the battery to strong shocks. Doing any
of these may result in leakage, rupture, heat generation, or ignition of the
battery. Dispose of any battery that has been dropped on the floor or oth-
erwise subjected to excessive shock. Batteries that have been subjected
to shock may leak if they are used.

• UL standards required that batteries be replaced only by experienced
technicians. Do not allow unqualified persons to replace batteries.

• With a CJ-series PLC, the sliders on the tops and bottoms of the Power
Supply Unit, CPU Unit, I/O Units, Special I/O Units, and CPU Bus Units
must be completely locked (until they click into place). The Unit may not
operate properly if the sliders are not locked in place.

• With a CJ-series PLC, always connect the End Plate to the Unit on the
right end of the PLC. The PLC will not operate properly without the End
Plate

• Unexpected operation may result if inappropriate data link tables or
parameters are set. Even if appropriate data link tables and parameters
have been set, confirm that the controlled system will not be adversely
affected before starting or stopping data links.

• CPU Bus Units will be restarted when routing tables are transferred from
a Programming Device to the CPU Unit. Restarting these Units is
xviii

Conformance to EC Directives 6
required to read and enable the new routing tables. Confirm that the sys-
tem will not be adversely affected before allowing the CPU Bus Units to
be reset.

6 Conformance to EC Directives

6-1 Applicable Directives
• EMC Directives

• Low Voltage Directive

6-2 Concepts
EMC Directives
OMRON devices that comply with EC Directives also conform to the related
EMC standards so that they can be more easily built into other devices or the
overall machine. The actual products have been checked for conformity to
EMC standards (see the following note). Whether the products conform to the
standards in the system used by the customer, however, must be checked by
the customer.

EMC-related performance of the OMRON devices that comply with EC Direc-
tives will vary depending on the configuration, wiring, and other conditions of
the equipment or control panel on which the OMRON devices are installed.
The customer must, therefore, perform the final check to confirm that devices
and the overall machine conform to EMC standards.

Note Applicable EMC (Electromagnetic Compatibility) standards are as follows:

EMS (Electromagnetic Susceptibility):
CS Series: EN61131-2 and EN61000-6-2
CJ Series: EN61000-6-2

EMI (Electromagnetic Interference):
EN50081-2
(Radiated emission: 10-m regulations)

Low Voltage Directive
Always ensure that devices operating at voltages of 50 to 1,000 V AC and 75
to 1,500 V DC meet the required safety standards for the PLC (EN61131-2).

6-3 Conformance to EC Directives
The CS/CJ-series PLCs comply with EC Directives. To ensure that the
machine or device in which the CS/CJ-series PLC is used complies with EC
Directives, the PLC must be installed as follows:

1,2,3... 1. The CS/CJ-series PLC must be installed within a control panel.

2. You must use reinforced insulation or double insulation for the DC power
supplies connected to DC Power Supply Units and I/O Units.

3. CS/CJ-series PLCs complying with EC Directives also conform to the
Common Emission Standard (EN50081-2). Radiated emission character-
istics (10-m regulations) may vary depending on the configuration of the
control panel used, other devices connected to the control panel, wiring,
and other conditions. You must therefore confirm that the overall machine
or equipment complies with EC Directives.
xix

Conformance to EC Directives 6
6-4 Relay Output Noise Reduction Methods
The CS/CJ-series PLCs conforms to the Common Emission Standards
(EN50081-2) of the EMC Directives. However, noise generated by relay out-
put switching may not satisfy these Standards. In such a case, a noise filter
must be connected to the load side or other appropriate countermeasures
must be provided external to the PLC.

Countermeasures taken to satisfy the standards vary depending on the
devices on the load side, wiring, configuration of machines, etc. Following are
examples of countermeasures for reducing the generated noise.

Countermeasures
(Refer to EN50081-2 for more details.)

Countermeasures are not required if the frequency of load switching for the
whole system with the PLC included is less than 5 times per minute.

Countermeasures are required if the frequency of load switching for the whole
system with the PLC included is more than 5 times per minute.

Countermeasure Examples
When switching an inductive load, connect an surge protector, diodes, etc., in
parallel with the load or contact as shown below.

Circuit Current Characteristic Required element

AC DC

Yes Yes If the load is a relay or solenoid, there is
a time lag between the moment the cir-
cuit is opened and the moment the load
is reset.

If the supply voltage is 24 or 48 V, insert
the surge protector in parallel with the
load. If the supply voltage is 100 to
200 V, insert the surge protector
between the contacts.

The capacitance of the capacitor must
be 1 to 0.5 �F per contact current of
1 A and resistance of the resistor must
be 0.5 to 1 � per contact voltage of 1 V.
These values, however, vary with the
load and the characteristics of the
relay. Decide these values from experi-
ments, and take into consideration that
the capacitance suppresses spark dis-
charge when the contacts are sepa-
rated and the resistance limits the
current that flows into the load when
the circuit is closed again.

The dielectric strength of the capacitor
must be 200 to 300 V. If the circuit is an
AC circuit, use a capacitor with no
polarity.

CR method

Power
supply

In
du

ct
iv

e
lo

ad

C

R

xx

Conformance to EC Directives 6
When switching a load with a high inrush current such as an incandescent
lamp, suppress the inrush current as shown below.

No Yes The diode connected in parallel with
the load changes energy accumulated
by the coil into a current, which then
flows into the coil so that the current will
be converted into Joule heat by the
resistance of the inductive load.

This time lag, between the moment the
circuit is opened and the moment the
load is reset, caused by this method is
longer than that caused by the CR
method.

The reversed dielectric strength value
of the diode must be at least 10 times
as large as the circuit voltage value.
The forward current of the diode must
be the same as or larger than the load
current.

The reversed dielectric strength value
of the diode may be two to three times
larger than the supply voltage if the
surge protector is applied to electronic
circuits with low circuit voltages.

Yes Yes The varistor method prevents the impo-
sition of high voltage between the con-
tacts by using the constant voltage
characteristic of the varistor. There is
time lag between the moment the cir-
cuit is opened and the moment the load
is reset.

If the supply voltage is 24 or 48 V, insert
the varistor in parallel with the load. If
the supply voltage is 100 to 200 V,
insert the varistor between the con-
tacts.

Circuit Current Characteristic Required element

AC DC

Diode method

Power
supply

In
du

ct
iv

e
lo

ad

Varistor method

Power
supply

In
du

ct
iv

e
lo

ad

OUT

COM

R
OUT

COM

R

Countermeasure 1

Providing a dark current of
approx. one-third of the rated
value through an incandescent

Countermeasure 2

Providing a limiting resistor

lamp
xxi

Conformance to EC Directives 6
xxii

SECTION 1
CPU Unit Operation

This section describes the basic structure and operation of the CPU Unit.

1-1 Initial Setup (CS1 CPU Units Only) . 2

1-2 Using the Internal Clock (CS1 CPU Units Only) . 5

1-3 Internal Structure of the CPU Unit . 6

1-3-1 Overview. 6

1-3-2 Block Diagram of CPU Unit Memory . 7

1-4 Operating Modes. 8

1-4-1 Description of Operating Modes . 8

1-4-2 Initialization of I/O Memory . 10

1-4-3 Startup Mode . 11

1-5 Programs and Tasks. 12

1-6 Description of Tasks . 14
1

Initial Setup (CS1 CPU Units Only) Section 1-1
1-1 Initial Setup (CS1 CPU Units Only)
Battery Installation Before using a CS1CPU Unit, you must install the Battery Set in the CPU Unit

using the following procedure.

1,2,3... 1. Insert a flat-blade screwdriver in the small gap at the bottom of the battery
compartment and flip the cover upward to open it.
2

Initial Setup (CS1 CPU Units Only) Section 1-1
2. Hold the Battery Set with the cable facing outward and insert it into the bat-
tery compartment.

3. Connect the battery connector to the battery connector terminals. Connect
the red wire to the top and the white wire to the bottom terminal. There are
two sets of battery connector terminals; connect the battery to either one.
It does not matter whether the top terminals or bottom terminals are used.

Battery compartment

Battery connector terminals
(Connect to either set of terminals.)

Red

White
3

Initial Setup (CS1 CPU Units Only) Section 1-1
4. Fold in the cable and close the cover.

Clearing Memory After installing the battery, clear memory using the memory clear operation to
initialize the RAM inside the CPU Unit.

Programming Console

Use the following procedure from a Programming Console.

Note You cannot specify more than one cyclic task when clearing memory from a
Programming Console. You can specify one cyclic task and one interrupt task,
or one cyclic task and no interrupt task. Refer to the Operation Manual for
more information on the memory clear operation. Refer to �������������
�������������� and ��������������� for more information on tasks.

CX-Programmer

Memory can also be cleared from the CX-Programmer. Refer to the CX-Pro-
grammer Operation Manual for the actual procedure.

Clearing Errors After clearing memory, clear any errors from the CPU Unit, including the low
battery voltage error.

Programming Console

Use the following procedure from a Programming Console.

CX-Programmer

Errors can also be cleared from the CX-Programmer. Refer to the CX-Pro-
grammer Operation Manual for the actual procedure.

Note When an Inner Board is mounted, an Inner Board routing table error may con-
tinue even after you have cancelled the error using the CX-Programmer.
(A42407 will be ON for a Serial Communications Board.) If this occurs, either
reset the power or restart the Inner Board, then cancel the error again.

MONInitial display 0SET NOT RESET 0 (or 1) MON

MONInitial display FUN

(Displayed error will be cleared.)

(Returns to the initial display.)

MON

MON
4

Using the Internal Clock (CS1 CPU Units Only) Section 1-2
1-2 Using the Internal Clock (CS1 CPU Units Only)
The internal clock of the CPU Unit is set to “00 year, 01 month, 01 day (00-01-
01), 00 hours, 00 minutes, 00 seconds (00:00:00), and Sunday (SUN)” when
the Battery Set is mounted in the CS-series CPU Unit.

When using the internal clock, turn ON the power supply after mounting the
Battery Set and 1) use a Programming Device (Programming Console or CX-
Programmer) to set the clock time, 2) execute the CLOCK ADJUSTMENT
(DATE) instruction, or 3) send a FINS command to start the internal clock from
the correct current time and date.

The Programming Console operation used to set the internal clock is shown
below.

Key Sequence

MON DataInitial display

↓

↑SHIFT WRITEFUN 0

Specify: Yr Mo Day Hr Min S

CHG
5

Internal Structure of the CPU Unit Section 1-3
1-3 Internal Structure of the CPU Unit

1-3-1 Overview
The following diagram shows the internal structure of the CPU Unit.

The User Program The user program is created from up to 288 program tasks, including interrupt
tasks. The tasks are transferred to the CPU Unit from the CX-Programmer
programming software.

There are two types of tasks. The first is a cyclic task that is executed once
per cycle (maximum of 32) and the other is an interrupt task that is executed
only when the interrupt conditions occur (maximum of 256). Cyclic tasks are
executed in numerical order.

Note With the CS1-H, CJ1-H, or CJ1M CPU Units, interrupt tasks can be executed
cyclically in the same way as cyclic tasks. These are called “extra cyclic
tasks.” The total number of tasks that can be executed cyclically must be 288
or less.

Program instructions read and write to I/O memory and are executed in order
starting at the top of the program. After all cyclic tasks are executed, the I/O
for all Units are refreshed, and the cycle repeats again starting at the lowest
cyclic task number.

Refer to the section on CPU Unit operation in the CS/CJ Series Operation
Manual for details on refreshing I/O.

I/O Memory I/O memory is the RAM area used for reading and writing from the user pro-
gram. It is comprised of one area that is cleared when power is turned ON and
OFF, and another area that will retain data.

I/O memory is also partitioned into an area that exchanges data with all Units
and an area strictly for internal use. Data is exchanged with all Units once per
program execution cycle and also when specific instructions are executed.

CPU Unit Task 1

Task 2

Task n

The programm is divided
into tasks and the tasks
are executed in order by
task number.

Memory Card
I/O memory, PC Setup,
programs and the EM area
can be saved as files.

User program

I/O memory

EM file memory

PLC Setup
and other
parameters

DIP switch

Auto-
matic
backup

Flash
memory

Access

Auto-
matic
backup

(CS1-H, CJ1-H, or
CJ1M CPU Units only)
6

Internal Structure of the CPU Unit Section 1-3
PLC Setup The PLC Setup is used to set various initial or other settings through software
switches.

DIP Switches DIP switches are used to set initial or other settings through hardware
switches.

Memory Cards Memory Cards are used as needed to store data such as programs, I/O mem-
ory data, the PLC Setup, and I/O comments created by Programming
Devices. Programs and various system settings can be written automatically
from the Memory Card when power is turned ON (automatic transfer at star-
tup).

Flash Memory (CS1-H,
CJ1-H, or CJ1M CPU Units
Only)

With the CS1-H, CJ1-H, or CJ1M CPU Units, the user program and parameter
area data, such as the PLC Setup, are automatically backed up in the built-in
flash memory whenever the user writes data to the CPU Unit. This enables
battery-free operation without using a Memory Card. I/O memory, including
most of the DM Area, are not backed up without a battery.

1-3-2 Block Diagram of CPU Unit Memory
CPU Unit memory (RAM) is comprised of the following blocks in the CS/CJ
Series:

• Parameter area (PLC Setup, registered I/O table, routing table, and CPU
Bus Unit settings)

• I/O memory areas

• The user program

Data in the parameter area and I/O memory areas is backed up by a Battery
(CS Series: CS1W-BAT01, CJ1-H: CPM2A-BAT01), and will be lost if battery
power is low.

The CS1-H, CJ1-H, or CJ1M CPU Units, however, provide a built-in flash
memory for data backup. The user program and parameter area data are
automatically backed up in the built-in flash memory whenever the user writes
data to the CPU Unit from a Programming Device (e.g., CX-Programmer or
Programming Console), including the following operations: Data transfers,
online editing, transfers from Memory Cards, etc. This means that the user
program and parameter area data will not be lost even if the battery voltage
drops.
7

Operating Modes Section 1-4
Note 1. The parameter area and user program (i.e., the user memory) can be
write-protected by turning ON pin 1 of the DIP switch on the front of the
CPU Unit.

2. EM file memory is part of the EM Area that has been converted to file
memory in the PLC Setup. All EM banks from the specified bank to the end
of the EM Area can be used only as file memory for storage of data and
program files.

3. Be sure to install the battery provided (CS1W-BAT01) before using a CS1
CPU Unit for the first time. After installing the battery, use a Programming
Device to clear the PLC’s RAM (parameter area, I/O memory area, and
user program).

4. A Battery is mounted to a CS1-H, CJ1, CJ1-H, or CJ1M CPU Unit when it
is shipped from the factory. There is no need to clear memory or set the
time.

5. The BKUP indicator on the front of the CPU Unit will light while data is be-
ing written to flash memory. Do not turn OFF the power supply to the CPU
Unit until the backup operation has been completed (i.e., until the BKUP
indicator goes out). Refer to ! !��"
��#�$�%��� for details.

1-4 Operating Modes

1-4-1 Description of Operating Modes
The following operating modes are available in the CPU Unit. These modes
control the entire user program and are common to all tasks.

PROGRAM Mode Program execution stops in PROGRAM mode, and the RUN indicator is not lit.
This mode is used when editing the program or making other preparations
operation, such as the following:

CPU Unit

 I/O memory area

Drive 1: EM file memory
(See note 2.)

Backup
Battery

A newly mounted battery will be good up to
five years at an ambient temperature of 25°C

Drive 0: Memory card
(flash memory)

User programUser program

File memory

Flash Memory
(CS1-H, CJ1-H, or CJ1M
CPU Units only)

Parameter area Parameter area
(See note 1.)

Built-in RAM

Automatically backed up to flash memory whenever
a write operation for the user program or parameter
area is performed from a Programming Device.

Auto-
written

Auto-
written
8

Operating Modes Section 1-4
• Registering the I/O table.

• Changing PLC Setup and other settings.

• Transferring and checking programs.

• Force-setting and resetting bits to check wiring and bit allocation.

In this mode, all cyclic and interrupt tasks are non-executing (INI), that is they
stop. See �! �&��'���������(������ for more details on tasks.
I/O refreshing is performed in PROGRAM mode. Refer to the Operation Man-
ual for information on refreshing I/O.

!WARNING The CPU Unit refreshes I/O even when the program is stopped (i.e., even in
PROGRAM mode). Confirm safety thoroughly in advance before changing the
status of any part of memory allocated to I/O Units, Special I/O Units, or CPU
Bus Units. Any changes to the data allocated to any Unit may result in unex-
pected operation of the loads connected to the Unit. Any of the following oper-
ation may result in changes to memory status.

• Transferring I/O memory data to the CPU Unit from a Programming
Device.

• Changing present values in memory from a Programming Device.

• Force-setting/-resetting bits from a Programming Device.

• Transferring I/O memory files from a Memory Card or EM file memory to
the CPU Unit.

• Transferring I/O memory from a host computer or from another PLC on a
network.

MONITOR Mode The following operations can be performed through Programming Devices
while the program is executing in MONITOR mode. The RUN indicator will be
lit. This mode is used to make test runs or other adjustments.

• Online Editing.

• Force-setting and force-resetting bits.

• Changing values in I/O memory.

In this mode, the cyclic tasks specified for execution at startup (see note) and
those are made executable by TKON(820) will be executed when program
execution reaches their task number. Interrupt tasks will be executed if their
interrupt conditions occur.

Note The tasks that are executed at startup are specified in the program properties
from the CX-Programmer.

RUN Mode This mode is used for normal program execution. The RUN indicator will be lit.
Some Programming Device operations like online editing, force-set/force-
reset, and changing I/O memory values are disabled in this mode, but other
Programming Device operations like monitoring the status of program execu-
tion (monitoring programs and monitoring I/O memory) are enabled.

Use this mode for normal system operation. Task execution is the same as in
MONITOR mode.

See 10-2 CPU Unit Operating Modes in the Operation Manual for more details
on operations that are available in each operating mode.
9

Operating Modes Section 1-4
1-4-2 Initialization of I/O Memory
The following table shows which data areas will be cleared when the operat-
ing mode is changed from PROGRAM mode to RUN/MONITOR mode or
vice-versa.

Note 1. Non-held areas: CIO Area, Work Area, Timer PVs, Timer Completion
Flags, Index Registers, Data Registers, Task Flags, and Condition Flags.
(The statuses of some addresses in the Auxiliary Area are held and others
are cleared.)

2. Held areas: Holding Area, DM Area, EM Area, Counter PVs, and Counter
Completion Flags.

3. Data in I/O memory will be retained when the IOM Hold Bit (A50012) is ON.
When the IOM Hold Bit (A50012) is ON and operation is stopped due to a
fatal error (including FALS(007)), the contents of I/O memory will be re-
tained but outputs on Output Units will all be turned OFF.

Mode change Non-held Areas
(Note 1)

Held Areas
(Note 2)

RUN/MONITOR � PROGRAM Clear (Note 3) Retained

PROGRAM � RUN/MONITOR Clear (Note 3) Retained

RUN � MONITOR Retained Retained
10

Operating Modes Section 1-4
1-4-3 Startup Mode
Refer to the Operation Manual for details on the Startup Mode setting for the
CPU Unit.

Note With CJ1, CS1-H, CJ1-H, or CJ1M CPU Units, the CPU Unit will start in RUN
Mode if a Programming Console is not connected. This differs from the default
operation for a CS1 CPU Unit, which will start in PROGRAM Mode by default
if a Programming Console is not connected.

Conditions CS1 CPU Unit CJ1, CS1-H, or
CJ1-H CPU Unit

PLC Setup is set to start according to
the mode set on the Programming Con-
sole, but a Programming Console is not
connected.

PROGRAM mode RUN mode

Power turned ON.

PLC Setup set
for mode on

Programming
Console?

Programming
Console

connected?

CJ1, CS1-H, CJ1-H, or CJ1M
CPU Unit: CPU Unit starts in
RUN mode.
CS1 CPU Unit: CPU Unit
starts in PROGRAM mode.

The CPU Unit will start in
the mode set on the
Programming Console.

The CPU Unit will start in
the mode set in the PLC
Setup.

Yes

No

No

Yes
11

Programs and Tasks Section 1-5
1-5 Programs and Tasks
Tasks specify the sequence and interrupt conditions under which individual
programs will be executed. They are broadly grouped into the following types:

1,2,3... 1. Tasks executed sequentially that are called cyclic tasks.

2. Tasks executed by interrupt conditions that are called interrupt tasks.

Note With the CS1-H, CJ1-H, or CJ1M CPU Units, interrupt tasks can be executed
cyclically in the same way as cyclic tasks. These are called “extra cyclic
tasks.”

Programs allocated to cyclic tasks will be executed sequentially by task num-
ber and I/O will be refreshed once per cycle after all tasks (more precisely
tasks that are in executable status) are executed. If an interrupt condition
goes into effect during processing of the cyclic tasks, the cyclic task will be
interrupted and the program allocated to the interrupt task will be executed.

Refer to the section on CPU Unit operation in the CS/CJ Series Operation
Manual for information in refreshing I/O.

In the above example, programming would be executed in the following order:
start of A, B, remainder of A, C, and then D. This assumes that the interrupt
condition for interrupt task 100 was established during execution of program
A. When execution of program B is completed, the rest of program A would be
executed from the place where execution was interrupted.

With earlier OMRON PLCs, one continuous program is formed from several
continuous parts. The programs allocated to each task are single programs
that terminate with an END instruction, just like the single program in earlier
PLCs.

Cyclic
task 0

Cyclic
task 1

Interrupt condition
goes into effect

Interrupt
task 100

Allocation

Program B

Program C

Program D
Cyclic
task n

I/O refreshing

Allocation

Allocation

Allocation

Program A
12

Programs and Tasks Section 1-5
One feature of the cyclic tasks is that they can be enabled (executable status)
and disabled (standby status) by the task control instructions. This means that
several program components can be assembled as a task, and that only spe-
cific programs (tasks) can then be executed as needed for the current product
model or process being performed (program step switching). Therefore perfor-
mance (cycle time) is greatly improved because only required programs will
be executed as needed.

A task that has been executed will be executed in subsequent cycles, and a
task that is on standby will remain on standby in subsequent cycles unless it is
executed again from another task.

Note Unlike earlier programs that can be compared to reading a scroll, tasks can
be compared to reading through a series of individual cards.

• All cards are read in a preset sequence starting from the lowest number.

• All cards are designated as either active or inactive, and cards that are
inactive will be skipped. (Cards are activated or deactivated by task con-
trol instructions.)

Earlier system

One continuous
subprogram

I/O refreshing

Allocation

CS/CJ Series

Task 1

Task 2

Task 3

Tasks can be put into non-
executing (standby) status.

I/O refreshing
13

Description of Tasks Section 1-6
• A card that is activated will remain activated and will be read in subse-
quent sequences. A card that is deactivated will remain deactivated and
will be skipped until it is reactivated by another card.

1-6 Description of Tasks
Tasks are broadly grouped into the following types:

1,2,3... 1. Cyclic tasks (32 max.)

Tasks that will be executed once per cycle if executable. Execution can
also be disabled for cyclic tasks if required.

2. Interrupt tasks

Tasks that are executed when the interrupt occurs whether or not a cyclic
task is being executed.

Interrupt tasks are grouped into the following four types (five types includ-
ing the extra cyclic tasks for CS1-H, CJ1-H, or CJ1M CPU Units):

a) Power OFF interrupt task: Executed when power is interrupted.
(1 max.)

b) Scheduled interrupt task: Executed at specified intervals. (2 max.).

c) I/O interrupt task (note): Executed when an Interrupt Input Unit in-
put turns ON (32 max.).

d) External interrupt task (note):Executed (256 max.) when requested by
an Special I/O Unit, CPU Bus Unit, or In-
ner Board (CS Series only).

e) Extra cyclic tasks: Interrupt tasks that are treated as cyclic
tasks. Extra cyclic tasks are executed
once every cycle as long as they are in an
executable condition.

A total of 288 tasks with 288 programs can be created and controlled through
the CX-Programmer. These include up to 32 cyclic tasks and 256 interrupt
tasks.

Note CJ1 CPU Units do not currently support I/O interrupt tasks and external inter-
rupt tasks. The maximum number of tasks for a CJ1 CPU Unit is thus 35, i.e.,
32 cyclic tasks and 3 interrupt tasks. The total number of programs that can
be created and managed is also 35.

Earlier program:
Like a scroll

CS/CJ-series program:
Like a series of cards that can be activated
or deactivated by other cards.

Activated Deactivated
14

Description of Tasks Section 1-6
Each program is allocated 1:1 to a task through individual program property
settings set with the CX-Programmer.

Program Structure Standard subroutine programs can be created and allocated to tasks as
needed to create programs. This means that programs can be created in
modules (standard components) and that tasks can be debugged individually.

When creating modular programs, addresses can be specified by symbols to
facilitate standardization.

Cyclic task 0

Executed in order starting
from the lowest number.

Cyclic task 1

Cyclic task 2

I/O refreshing

Peripheral processing

Interrupt occurs

Interrupt task 5

Note Condition Flags (ER, >, =, etc.) and instruction
conditions (interlock ON, etc.) are cleared at the
beginning of each task.

Standard subroutine programs

User program ABC User program ABD

Task 1 (A) Task 1 (A)

Task 2 (B) Task 2 (B)

Task 3 (C) Task 3 (D)
15

Description of Tasks Section 1-6
Executable and Standby
Status

The TASK ON and TASK OFF instructions (TKON(820) and TKOF(821)) can
be executed in one task to place another task in executable or standby status.

Instructions in tasks that are on standby will not be executed, but their I/O sta-
tus will be maintained. When a task is returned to executable status, instruc-
tions will be executed with the I/O status that was maintained.

Example: Programming with a Control Task

In this example, task 0 is a control task that is executed first at the start of
operation. Other tasks can be set from the CX-Programmer (but not a Pro-
gramming Console) to start or not to start at the beginning of operation.

Once program execution has been started, tasks can be controlled with
TKON(820) and TKOF(821).

Task 0 (control task)

Task 1

Task 2

Task 3

Task 0

Example: T
(set in the program properties from the CX-Programmer).
ask 0 is set to be executed at the start of operation

Task 1 is executable when a is ON.
Task 1 is put on standby when b is ON.
Tasks 2 and 3 are executable when c is ON.
Tasks 2 and 3 are put on standby when d is ON.

Program

Task 0

Task 1

Task 2

Task 3

Task 0

Task 1

Task 2

Task 3

Task 0

Task 1

Task 2

Task 3

Task 0

Task 1

Task 2

Task 3

Task 0

Task 1

Task 2

Task 3

Task 0

Task 1

Task 2

Task 3

Start task 1
when a is
ON.

Start tasks 2
and 3 when
c is ON.

Put task 1 on
standby when
b is ON.

Put tasks 2
and 3 on
standby
when d is
ON.
16

Description of Tasks Section 1-6
Example: Each Task Controlled by Another Task

In this example, each task is controlled by another task.

Program

Task 0

Task 1

Task 2

Program for task 0

Program for task 1

Example: Task 1 is set to be executed at the start of operation
unconditionally.
Task 1 executable when a is ON.
Task 1 put on standby when b is ON.
Task 2 is executable when c is ON and task 1 has
been executed.

Task 0

Task 1

Task 2

Task 0

Task 1

Task 2

Task 0

Task 1

Task 2

Task 0

Task 1

Task 2

Put task 1
on standby
when b is
ON.

If task 1 executed

Start
task 2
when c
is ON.

Start task 1
when a is
ON.

Note TKOF(821) can be used in a task to put that
task itself on standby.
17

Description of Tasks Section 1-6
Task Execution Time While a task is on standby, instructions in that task are not executed, so their
OFF instruction execution time will not be added to the cycle time.

Note From this standpoint, instructions in a task that is on standby are just like
instructions in a jumped program section (JMP-JME).

Since instructions in a non-executed task do not add to the cycle time, the
overall system performance can be improved significantly by splitting the sys-
tem into an overall control task and individual tasks that are executed only
when necessary.

Earlier system

Most instructions
are executed.
(Instructions in
subroutines and
jumps are
executed only
when neces
sary.)

CS/CJ-series PLCs

Instructions are
executed only
when necessary.

Task 0

Task 1

Task 2

Task 3
18

SECTION 2
Programming

This section basic information required to write, check, and input programs.

2-1 Basic Concepts . 20

2-1-1 Programs and Tasks . 20

2-1-2 Basic Information on Instructions . 21

2-1-3 Instruction Location and Execution Conditions 23

2-1-4 Addressing I/O Memory Areas. 24

2-1-5 Specifying Operands. 25

2-1-6 Data Formats. 30

2-1-7 Instruction Variations . 34

2-1-8 Execution Conditions . 34

2-1-9 I/O Instruction Timing . 36

2-1-10 Refresh Timing . 38

2-1-11 Program Capacity . 41

2-1-12 Basic Ladder Programming Concepts . 41

2-1-13 Inputting Mnemonics . 46

2-1-14 Program Examples . 49

2-2 Precautions . 54

2-2-1 Condition Flags. 54

2-2-2 Special Program Sections . 59

2-3 Checking Programs . 63

2-3-1 Errors during Programming Device Input . 63

2-3-2 Program Checks with the CX-Programmer 63

2-3-3 Program Execution Check . 65

2-3-4 Checking Fatal Errors . 67
19

Basic Concepts Section 2-1
2-1 Basic Concepts

2-1-1 Programs and Tasks
CS/CJ-series PLCs execute ladder-diagram programs contained in tasks. The
ladder-diagram program in each task ends with an END(001) instruction just
as with conventional PLCs.

Tasks are used to determine the order for executing the ladder-diagram pro-
grams, as well as the conditions for executing interrupts.

This section describes the basic concepts required to write CS/CJ-series pro-
grams. See ��������������� for more information on tasks and their rela-
tionship to ladder-diagram programs.

Note Tasks and Programming Devices
Tasks are handled as described below on the Programming Devices. Refer to
�!�����)��%%��)�&���'�������������(�������� and to the CS/CJ-series Pro-
gramming Consoles Operation Manual (W341) and CX-Programmer Opera-
tion Manual for more details.

CX-Programmer

The CX-Programmer is used to designate task types and task numbers as
attributes for individual programs.

Programming Console

Programs are accessed and edited on a Programming Console by specifying
CT00 to CT 31 for cyclic tasks and IT00 to IT255 for interrupt tasks. When the
memory clear operation is performed with a Programming Console, only
cyclic task 0 (CT00) can be written in a new program. Use CX-Programmer to
create cyclic tasks 1 through 31 (CT01 through CT31).

Cyclic
task 1 Interrupt condition met.

Interrupt
task

Allocated

Program A

Program B

Each ladder-diagram
program ends with an
END(001) instruction.

Program C

I/O refresh

Allocated

Allocated

Cyclic
task n
20

Basic Concepts Section 2-1
2-1-2 Basic Information on Instructions
Programs consist of instructions. The conceptual structure of the inputs to and
outputs from an instruction is shown in the following diagram.

Power Flow
The power flow is the execution condition that is used to control the execute
and instructions when programs are executing normally. In a ladder program,
power flow represents the status of the execution condition.

Input Instructions • Load instructions indicate a logical start and outputs the execution condi-
tion.

• Intermediate instructions input the power flow as an execution condition
and output the power flow to an intermediate or output instruction.

Output Instructions Output instructions execute all functions, using the power flow as an execution
condition.

Instruction Conditions
Instruction conditions are special conditions related to overall instruction exe-
cution that are output by the following instructions. Instruction conditions have
a higher priority than power flow (P.F.) when it comes to deciding whether or
not to execute an instruction. An instruction may become not be executed or
may act differently depending on instruction conditions. Instruction conditions

Power flow (P.F., execution condition)

Instruction condition

Flags

Operands
(sources)

Operands
(destinations)

Memory

Instruction

*1: Input instructions only.

*2: Not output for all instructions.

Power flow (P.F., execution condition)*1

Instruction condition*2

Flag

Outputs the
execution condition.

=
D00000

#1215

Outputs the
execution condition.

LD power flow

Input block Output block

Power flow for
output instruction
21

Basic Concepts Section 2-1
are reset (canceled) at the start of each task, i.e., they are reset when the task
changes.

The following instructions are used in pairs to set and cancel certain instruc-
tion conditions. These paired instructions must be in the same task.

Flags
In this context, a flag is a bit that serves as an interface between instructions.

Operands
Operands specify preset instruction parameters (boxes in ladder diagrams)
that are used to specify I/O memory area contents or constants. An instruction
can be executed entering an address or constant as the operands. Operands
are classified as source, destination, or number operands.

Instruction
condition

Description Setting
instruction

Canceling
instruction

Interlocked An interlock turns OFF part of the program. Special conditions, such as
turning OFF output bits, resetting timers, and holding counters are in
effect.

IL(002) ILC(003)

BREAK(514)
execution

Ends a FOR(512) - NEXT(513) loop during execution. (Prevents execu-
tion of all instructions until to the NEXT(513) instruction.)

BREAK(514) NEXT(513)

Executes a JMP0(515) to JME0(516) jump. JMP0(515) JME0(516)

Block program
execution

Executes a program block from BPRG(096) to BEND(801). BPRG(096) BEND(801)

Input flags Output flags

• Differentiation Flags
Differentiation result flags. The status of these
flags are input automatically to the instruction for
all differentiated up/down output instructions and
the DIFU(013)/DIFD(014) instructions.

• Carry (CY) Flag
The Carry Flag is used as an unspecified operand
in data shift instructions and addition/subtraction
instructions.

• Flags for Special Instructions
These include teaching flags for FPD(269) instruc-
tions and network communications enabled flags

• Differentiation Flags
Differentiation result flags. The status of these flags are output
automatically from the instruction for all differentiated up/down
output instructions and the UP(521)/DOWN(522) instruction.

• Condition Flags
Condition Flags include the Always ON/OFF Flags, as well as
flags that are updated by results of instruction execution. In user
programs, these flags can be specified by labels, such as ER,
CY, >, =, A1, A0, rather than by addresses.

• Flags for Special Instructions
These include memory card instruction flags and MSG(046)
execution completed flags.

Example

S (source)

D (destination)

N (number)

Operand types Operand
symbol

Description

Source Specifies the address of the data
to be read or a constant.

S Source Oper-
and

Source operand other than control
data (C)

C Control data Compound data in a source oper-
and that has different meanings
depending bit status.

Destination
(Results)

Specifies the address where data
will be written.

D (R) ---

Number Specifies a particular number used
in the instruction, such as a jump
number or subroutine number.

N ---
22

Basic Concepts Section 2-1
Note Operands are also called the first operand, second operand, and so on, start-
ing from the top of the instruction.

2-1-3 Instruction Location and Execution Conditions
The following table shows the possible locations for instructions. Instructions
are grouped into those that do and those do not require execution conditions.
See �������� *� �����	'����� "	�'����� Instructions for details on individual
instructions.

Note 1. There is another group of instruction that executes a series of mnemonic
instructions based on a single input. These are called block programming
instructions. Refer to the CS/CJ Series CPU Units Instruction Reference
Manual for details on these block programs.

2. If an instruction requiring an execution condition is connected directly to
the left bus bar without a logical start instruction, a program error will occur
when checking the program on a Programming Device (CX-Programmer
or Programming Console).

First operand

Second operand

Instruction type Possible location Execution
condition

Diagram Examples

Input instructions Logical start (Load
instructions)

Connected directly
to the left bus bar
or is at the begin-
ning of an instruc-
tion block.

Not required. LD, LD TST(350),
LD > (and other
symbol compari-
son instructions)

Intermediate
instructions

Between a logical
start and the out-
put instruction.

Required. AND, OR, AND
TEST(350), AND
> (and other ADD
symbol compari-
son instructions),
UP(521),
DOWN(522),
NOT(520), etc.

Output instructions Connected directly
to the right bus
bar.

Required. Most instructions
including OUT and
MOV(021).

Not required. END(001),
JME(005),
FOR(512),
ILC(003), etc.
23

Basic Concepts Section 2-1
2-1-4 Addressing I/O Memory Areas
Bit Addresses

Example: The address of bit 03 in word 0001 in the CIO Area would be as
shown below. This address is given as “CIO 000103” in this manual.

Word Addresses

Example: The address of bits 00 to 15 in word 0010 in the CIO Area would be
as shown below. This address is given as “CIO 0010” in this manual.

DM and EM Areas addresses are given with “D” or “E” prefixes, as shown
below for the address D00200.

@@@@ @@

Bit number (00 to 15)

Indicates the word address

0001 03

Bit number (03)

Word address: 0001

Word

0000

0001

0002

15 14 13 12 11 10 08 07 06 05 04 0309 02 01 00

Bit: CIO 000103

@@@@

Indicates the word address

0010

Word address

D00200

Word address
24

Basic Concepts Section 2-1
Example: The address of word 2000 in the current bank of the Extended Data
Memory would be as follows:

The address of word 2000 in the bank 1 of the Extended Data Memory would
be as follows:

2-1-5 Specifying Operands

E00200

Word address

E1_00200

Word address
Bank number

Operand Description Notation Application
examples

Specifying bit
addresses

Specifying
word
addresses

MOV 0003
D00200

The word and bit numbers are specified di
rectly to specify a bit (input input bits).

@@@@ @@

Bit number
(00 to 15)

Indicates the word address.

Note The same addresses are used to access
timer/counter Completion Flags and
Present Values. There is also only one
address for a Task Flag.

0001 02

Bit number (02)

Word number: 0001

0001
02

The word number is specified directly to speci-
fy the 16-bit word.

@@@@

Indicates the word address.

0003

Word number: 0003

D00200

Word number: 00200
25

Basic Concepts Section 2-1
Specifying
indirect DM/
EM addresses
in Binary
Mode

1) D00000 to D32767 are specified if
@D(@@@@@) contains 0000 Hex to 7FFF
Hex (00000 to 32767).

MOV #0001
@00300

2) E0 _00000 to E0 _32767 of bank 0 in
Extended Data Memory (EM) are specified
if @D(@@@@@) contains 8000 Hex to
FFFF Hex (32768 to 65535).

3) E@_00000 to E@_32767 in the specified
bank are specified if @E@_@@@@@ con-
tains 0000 Hex to 7FFF Hex (00000 to
32767).

MOV #0001
@E1_00200

4) E(@+1)_00000 to E(@+1)_32767 in the
bank following the specified bank @ are
specified if @E@_@@@@@ contains
8000 Hex to FFFF Hex (32768 to 65535).

Note When specifying an indirect address in Binary Mode, treat Data Memory (DM) and Extended Data
Memory (EM) (banks 0 to C) as one series of addresses. If the contents of an address with the @
symbol exceeds 32767, the address will be assumed to be an address in the Extended Data Mem-
ory (EM) continuing on from 00000 in bank No. 0.

Example: If the Data Memory (DM) word contains 32768, E1_00000 in bank 0 in Extended Data Mem-
ory (EM) would be specified.

Note If the Extended Data Memory (EM) bank number is specified as “n” and the contents of the word
exceeds 32767, the address will be assumed to be an address in the Extended Data Memory (EM)
continuing on from 00000 in bank N+1.

Example: If bank 2 in Extended Data Memory (EM) contains 32768, E3_00000 in bank number 3 in
Extended Data Memory (EM) would be specified.

Operand Description Notation Application
examples

@D@@@@@

The offset from the beginning of the area is
specified. The contents of the address will be
treated as binary data (00000 to 32767) to
specify the word address in Data Memory (DM)
or Extended Data Memory (EM). Add the @
symbol at the front to specify an indirect ad-
dress in Binary Mode.

Contents 00000 to 32767
(0000 Hex to
7FFF Hex in BIN)

D

@D00300

Contents0 1 0 0
Binary: 256

Specifies D00256.

Add the @ symbol.

@D00300

Contents8 0 0 1

Binary: 32769

Specifies E0 00001.

@E1_00200

Contents0 1 0 1
Binary: 257

Specifies E1_00257.

@E1_00200

Contents8 0 0 2

Binary: 32770

Specifies E2_00002.
26

Basic Concepts Section 2-1
Specifying
indirect DM/
EM addresses
in BCD Mode

MOV #0001
*D00200

Operand Description Notation Application
examples

*D@@@@@

The offset from the beginning of the area is
specified. The contents of the address will be
treated as BCD data (0000 to 9999)to specify
the word address in Data Memory (DM) or Ex-
tended Data Memory (EM). Add an asterisk (*)
at the front to specify an indirect address in
BCD Mode.

Contents 00000 to 9999
(BCD)

D

*D00200

Contents0 1 0 0

Specifies D0100

Add an asterisk (*).

Operand Description Notation Application examples

Specifying a
register
directly

An index register (IR) or a data register (DR) is speci-
fied directly by specifying IR@ (@: 0 to 15) or DR@
(@: 0 to 15).

IR0

IR1

MOVR 000102 IR0
Stores the PLC memory address for
CIO 0010 in IR0.
MOVR 0010 IR1
Stores the PLC memory address for
CIO 0010 in IR1.

Specifying
an indirect
address
using a reg-
ister

Indirect
address
(No offset)

The bit or word with the PLC memory
address contained in IR@ will be speci-
fied.
Specify ,IR@ to specify bits and words
for instruction operands.

,IR0

,IR1

LD ,IR0
Loads the bit with the PLC memory
address in IR0.
MOV #0001 ,IR1
Stores #0001 in the word with the PLC
memory in IR1.

Constant
offset

The bit or word with the PLC memory
address in IR@ + or – the constant is
specified.

Specify +/– constant ,IR@. Constant off-
sets range from –2048 to +2047 (deci-
mal). The offset is converted to binary
data when the instruction is executed.

+5,IR0

+31,IR1

LD +5 ,IR0
Loads the bit with the PLC memory
address in IR0 + 5.

MOV #0001 +31 ,IR1
Stores #0001 in the word with the PLC
memory address in IR1 + 31

DR offset The bit or word with the PLC memory
address in IR@ + the contents of DR@ is
specified.
Specify DR@ ,IR@. DR (data register)
contents are treated as signed-binary
data. The contents of IR@ will be given a
negative offset if the signed binary value
is negative.

DR0 ,IR0

DR0 ,IR1

LD DR0 ,IR0
Loads the bit with the PLC memory
address in IR0 + the value in DR0.
MOV #0001 DR0 ,IR1
Stores #0001 in the word with the PLC
memory address in IR1 + the value in
DR0.

Auto Incre-
ment

The contents of IR@ is incremented by
+1 or +2 after referencing the value as
an PLC memory address.
+1: Specify ,IR@+
+2: Specify ,IR@ + +

,IR0 ++

,IR1 +

LD ,IR0 ++
Increments the contents of IR0 by 2
after the bit with the PLC memory
address in IR0 is loaded.
MOV #0001 ,IR1 +
Increments the contents of IR1 by 1
after #0001 is stored in the word with
the PLC memory address in IR1.

Auto Dec-
rement

The contents of IR@ is decremented by
–1 or –2 after referencing the value as
an PLC memory address.

–1: Specify ,–IR@
–2: Specify ,– –IR@

,– –IR0

,–IR1

LD ,– –IR0
After decrementing the contents of IR0
by 2, the bit with the PLC memory
address in IR0 is loaded.
MOV #0001 ,–IR1
After decrementing the contents of IR1
by 1, #0001 is stored in the word with
the PLC memory address in IR1.
27

Basic Concepts Section 2-1
Note Unsigned decimal notation if used for the CX-Programmer only.

Data Operand Data form Symbol Range Application example

16-bit con-
stant

All binary data or
a limited range of
binary data

Unsigned binary # #0000 to #FFFF ---

Signed decimal ± –32768 to
+32767

Unsigned deci-
mal

& (See Note.) &0 to &65535 ---

All BCD data or a
limited range of
BCD data

BCD # #0000 to #9999 ---

32-bit con-
stant

All binary data or
a limited range of
binary data

Unsigned binary # #00000000 to
#FFFFFFFF

Signed binary + –2147483648 to
+2147483647

Unsigned deci-
mal

& (See Note.) &0 to
&429467295

All BCD data or a
limited range of
BCD data

BCD # #00000000 to
#99999999

Text string Description Symbol Examples ---

Text string data is stored in ASCII
(one byte except for special charac-
ters) in order from the leftmost to the
rightmost byte and from the right-
most (smallest) to the leftmost word.
00 Hex (NUL code) is stored in the
rightmost byte of the last word if
there is an odd number of charac-
ters.

0000 Hex (2 NUL codes) is stored in
the leftmost and rightmost vacant
bytes of the last word + 1 if there is
an even number of characters.

ASCII characters that can be used in a text string includes alphanumeric characters, Katakana and sym-
bols (except for special characters). The characters are shown in the following table.

'ABCDE'

'A' 'B'
'C' 'D'
'E' NUL

41 42
43 44
45 00

'ABCD'

'A' 'B'
'C' 'D'
NUL NUL

41 42
43 44
00 00

MOV$ D00100 D00200

41 42
43 44
45 00

41 42
43 44
45 00

D00100
D00101
D00102

D00200
D00201
D00202
28

Basic Concepts Section 2-1
ASCII Characters

Bits 0 to 3 Bits 4 to 7

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 0 Space � � � � � � � �

0001 1 � � � 	
 � � � � �

0010 2 � � � � � � 	
 �

0011 3 � � � � � � � � �

0100 4 � � � � � � � � � �

0101 5 � � ! " # � � � �

0110 6 $ % & ' () � � � �

0111 7 * + , - . / � � � �

1000 8 0 1 2 3 4 5 ! " #

1001 9 6 7 8 9 : ; $ % & '

1010 A < = > ? @ A () * +

1011 B B C D E F G , - . /

1100 C H I J K L M 0 1 2 3

1101 D N O P Q R S 4 5 6 7

1110 E T U V W X ~ 8 9 : ;

1111 F Y Z [\] < = > ?
29

Basic Concepts Section 2-1
2-1-6 Data Formats
The following table shows the data formats that the CS/CJ Series can handle.

Data type Data format Decimal 4-digit
hexadecimal

Unsigned
binary

0 to
65535

0000 to FFFF

Signed
binary

–32768 to
+32767

8000 to 7FFF

BCD
(binary
coded dec-
imal)

0 to 9999 0000 to 9999

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

23 22 21 20

3276816384 81924092 2048 1024 512 256 128 64 12 16 8 4 2 1

23 22 21 2023 22 21 2023 22 21 20

Binary

Decimal

Hex

Sign bit: 0: Positive, 1: Negative

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

23 22 21 20

3276816384 81924092 2048 1024 512 256 128 64 12 16 8 4 2 1

23 22 21 2023 22 21 2023 22 21 20

Binary

Decimal

Hex

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

23 22 21 2023 22 21 2023 22 21 2023 22 21 20

0 to 9 0 to 9 0 to 9 0 to 9

Binary

Decimal
30

Basic Concepts Section 2-1
Signed Binary Data

In signed binary data, the leftmost bit indicates the sign of binary 16-bit data.
The value is expressed in 4-digit hexadecimal.

Positive Numbers: A value is positive or 0 if the leftmost bit is 0 (OFF). In 4-
digit hexadecimal, this is expressed as 0000 to 7FFF Hex.

Negative Numbers: A value is negative if the leftmost bit is 1 (ON). In 4-digit
hexadecimal, this is expressed as 8000 to FFFF Hex. The absolute of the
negative value (decimal) is expressed as a two’s complement.

Example: To treat –19 in decimal as signed binary, 0013 Hex (the absolute
value of 19) is subtracted from FFFF Hex and then 0001 Hex is added to yield
FFED Hex.

Single-pre-
cision
floating-
point deci-
mal

--- ---

Double-
precision
floating-
point deci-
mal

--- ---

Data type Data format Decimal 4-digit
hexadecimal

31 30 29 23 22 21 20 19 18 17 3 2 1 0

Sign of
mantissa

Exponent Mantissa

Value = (−1)Sign x 1.[Mantissa] x 2Exponent

Binary

 Sign (bit 31)

 Mantissa

 Exponent

1: negative or 0: positive

The 23 bits from bit 00 to bit 22 contain the mantissa,
i.e., the portion below the decimal point in 1.@@@.....,
in binary.

The 8 bits from bit 23 to bit 30 contain the exponent.
The exponent is expressed in binary as 127 plus n
in 2n.

Note This format conforms to IEEE754 standards for single-precision floating-point
data and is used only with instructions that convert or calculate floating-point
data. It can be used to set or monitor from the I/O memory Edit and Monitor
Screen on the CX-Programmer (not supported by the Programming Consoles).
As such, users do not need to know this format although they do need to know
that the formatting takes up two words.

63 62 61 52 51 50 49 48 47 46 3 2 1 0

Sign of
mantissa

Exponent Mantissa

Value = (−1)Sign x 1.[Mantissa] x 2Exponent

Binary

 Sign (bit 63)

 Mantissa

 Exponent

1: negative or 0: positive

The 52 bits from bit 00 to bit 51 contain the mantissa,
i.e., the portion below the decimal point in 1.@@@.....,
in binary.

The 11 bits from bit 52 to bit 62 contain the exponent
The exponent is expressed in binary as 1023 plus n
in 2n.

Note This format conforms to IEEE754 standards for double-precision floating-point
data and is used only with instructions that convert or calculate floating-point
data. It can be used to set or monitor from the I/O memory Edit and Monitor
Screen on the CX-Programmer (not supported by the Programming Consoles).
As such, users do not need to know this format although they do need to know
that the formatting takes up four words..
31

Basic Concepts Section 2-1
Complements

Generally the complement of base x refers to a number produced when all
digits of a given number are subtracted from x – 1 and then 1 is added to the
rightmost digit. (Example: The ten’s complement of 7556 is 9999 – 7556 + 1 =
2444.) A complement is used to express a subtraction and other functions as
an addition.

Example: With 8954 – 7556 = 1398, 8954 + (the ten’s complement of 7556) =
8954 + 2444 = 11398. If we ignore the leftmost bit, we get a subtraction result
of 1398.

Two’s Complements

A two’s complement is a base-two complement. Here, we subtract all digits
from 1 (2 – 1 = 1) and add one.

Example: The two’s complement of binary number 1101 is 1111 (F Hex) –
1101 (D Hex) + 1 (1 Hex) = 0011 (3 Hex). The following shows this value
expressed in 4-digit hexadecimal.

The two’s complement b Hex of a Hex is FFFF Hex – a Hex + 0001 Hex =
b Hex. To determine the two’s complement b Hex of “a Hex,” use b Hex =
10000 Hex – a Hex.

Example: to determine the two’s complement of 3039 Hex, use 10000 Hex –
3039 Hex = CFC7 Hex.

Similarly use a Hex = 10000 Hex – b Hex to determine the value a Hex from
the two’s complement b Hex.

Example: To determine the real value from the two’s complement CFC7 Hex
use 10000 Hex – CFC7 Hex = 3039 Hex.

The CS/CJ Series has two instructions: NEG(160)(2’S COMPLEMENT) and
NEGL(161) (DOUBLE 2’S COMPLEMENT) that can be used to determine the
two’s complement from the true number or to determine the true number from
the two’s complement.

Signed BCD Data

Signed BCD data is a special data format that is used to express negative
numbers in BCD. Although this format is found in applications, it is not strictly
defined and depends on the specific application. The CS/CJ Series supports
the following instructions to convert the data formats: SIGNED BCD-TO-
BINARY: BINS(470), DOUBLE SIGNED BCD-TO-BINARY: BISL(472),

F F F F

1111 1111 1111 1111

0 0 1 3

0000 0000 0001 0011

True number

−)

F F E C

1111 1111 1110 1100

0 0 0 1

0000 0000 0000 0001

Two's complement

+)

F F E D

1111 1111 1110 1101
32

Basic Concepts Section 2-1
SIGNED BINARY-TO-BCD: BCDS(471), and DOUBLE SIGNED BINARY-TO-
BCD: BDSL(473). Refer to the CS/CJ-series Programmable Controllers Pro-
gramming Manual (W340) for more information.

Decimal Hexadecimal Binary BCD

0 0 0000 0000

1 1 0001 0001

2 2 0010 0010

3 3 0011 0011

4 4 0100 0100

5 5 0101 0101

6 6 0110 0110

7 7 0111 0111

8 8 1000 1000

9 9 1001 1001

10 A 1010 0001 0000

11 B 1011 0001 0001

12 C 1100 0001 0010

13 D 1101 0001 0011

14 E 1110 0001 0100

15 F 1111 0001 0101

16 10 10000 0001 0110

Decimal Unsigned binary (4-digit
hexadecimal)

Signed binary (4-digit
hexadecimal)

+65,535 FFFF Cannot be expressed.

+65534 FFFE

 .
 .
 .

 .
 .
 .

+32,769 8001

+32,768 8000

+32,767 7FFF 7FFF

+32,766 7FFE 7FFE

 .
 .
 .

 .
 .
 .

+2 0002 0002

+1 0001 0001

0 0000 0000

–1 Cannot be expressed. FFFF

–2 FFFE

 .
 .
 .

–32,767 8001

–32,768 8000
33

Basic Concepts Section 2-1
2-1-7 Instruction Variations
The following variations are available for instructions to differentiate executing
conditions and to refresh data when the instruction is executed (immediate
refresh).

2-1-8 Execution Conditions
The CS/CJ Series offers the following types of basic and special instructions.

• Non-differentiated instructions executed every cycle

• Differentiated instructions executed only once

Non-differentiated Instructions
Output instructions that required execution conditions are executed once
every cycle while the execution condition is valid (ON or OFF).

Input instructions that create logical starts and intermediate instructions read
bit status, make comparisons, test bits, or perform other types of processing
every cycle. If the results are ON, power flow is output (i.e., the execution con-
dition is turned ON).

Input-differentiated Instructions

Upwardly Differentiated Instructions (Instruction Preceded by @)
• Output Instructions: The instruction is executed only during the cycle in

which the execution condition turned ON (OFF � ON) and are not exe-
cuted in the following cycles.

Variation Symbol Description

Differentiation ON @ Instruction that differentiates when the execu-
tion condition turns ON.

OFF % Instruction that differentiates when the execu-
tion condition turns OFF.

Immediate refreshing ! Refreshes data in the I/O area specified by
the operands or the Special I/O Unit words
when the instruction is executed.

Instruction (mnemonic)

Differentiation variation

Immediate refresh variation

@

Non-differentiated
output instruction

Example

Non-differentiated input instruction
Example

(@) Upwardly-differ
entiated instruction

Example

Executes the MOV instruction once when
CIO 000102 goes OFF → ON.

@MOV
34

Basic Concepts Section 2-1
• Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output an ON execution
condition (power flow) when results switch from OFF to ON. The execu-
tion condition will turn OFF the next cycle.

• Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output an OFF execution
condition (power flow stops) when results switch from OFF to ON. The
execution condition will turn ON the next cycle.

Downwardly Differentiated Instructions (Instruction preceded by %)
• Output instructions: The instruction is executed only during the cycle in

which the execution condition turned OFF (ON � OFF) and is not exe-
cuted in the following cycles.

• Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output the execution condi-
tion (power flow) when results switch from ON to OFF. The execution con-
dition will turn OFF the next cycle.

Note a) Unlike the upwardly differentiated instructions, downward differen-
tiation variation (%) can only be added to LD, AND, OR, SET and
RSET instructions. To execute downward differentiation with other
instructions, combined the instructions with a DIFD or a DOWN in-
struction.

b) Upwardly and downwardly differentiated instructions can be re-
placed by combinations of DIFFERENTIATE UP (DIFU) and DIF-

Upwardly differentiated input instruction
Example

ON execution condition created for one
cycle only when CIO 000103 goes from
OFF to ON.

Upwardly differentiated input instruction

Example

OFF execution condition created for one
cycle only when CIO 00103 goes from
OFF to ON.

0001
03

(%) Downwardly dif-
ferentiated instruction

Example

Executes the SET instruction once
when CIO 000102 goes ON to OFF. .

%SET

Downwardly differentiated instruction
Example

Will turn ON when the CIO 000103 switches from
ON → OFF and will turn OFF after one cycle.
35

Basic Concepts Section 2-1
FERENTIATE DOWN (DIFD) instructions, power flow
differentiation UP and DOWN instructions as well as upwardly/
downwardly differentiated LOAD instructions (@LD/%LD).

• Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output an OFF execution
condition (power flow stops) when results switch from ON to OFF. The
execution condition will turn ON the next cycle.

2-1-9 I/O Instruction Timing
The following timing chart shows different operating timing for individual
instructions using a program comprised of only LD and OUT instructions.

Differentiated Instructions
• A differentiated instruction has an internal flag that tells whether the previ-

ous value is ON or OFF. At the start of operation, the previous value flags
for upwardly differentiated instruction (DIFU and @ instructions) are set to
ON and the previous value flags for downwardly differentiated instructions

Downwardly differentiated input instruction
Example

OFF execution condition created for one
cycle only when CIO 00103 goes from
ON to OFF.

0001
03

Input
read

CPU pro-
cessing

Instruction
executed.

I/O refresh

Input
read

Input
read

Input
read

Input
read

Input
read

Input
read

Input
read

Input
read

Input
read

Input read

Input
read

A

A

A

A

A

A

A

A

A

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

A

A

B11

B12

!

!

!

!

A

!

!

!

!

!

!

36

Basic Concepts Section 2-1
(DIFD and % instructions) are set to OFF. This prevents differentiation
outputs from being output unexpectedly at the start of operation.

• An upwardly differentiated instruction (DIFU or @ instruction) will output
ON only when the execution condition is ON and flag for the previous
value is OFF.

• Use in Interlocks (IL - ILC Instructions)
In the following example, the previous value flag for the differentiated
instruction maintains the previous interlocked value and will not output a
differentiated output at point A because the value will not be updated
while the interlock is in effect.

• Use in Jumps (JMP - JME Instructions): Just as for interlocks, the pre-
vious value flag for a differentiated instruction is not changed when the
instruction is jumped, i.e., the previous value is maintained. Upwardly and
downwardly differentiate instructions will output the execution condition
only when the input status has changed from the status indicated by the
previous value flag.

Note a) Do not use the Always ON Flag or A20011 (First Cycle Flag) as
the input bit for an upwardly differentiated instruction. The instruc-
tion will never be executed.

b) Do not use Always OFF Flag as the input bit for a downwardly dif-
ferentiated instruction. The instruction will never be executed.

IL is
executing

IL is
executing

(002)
 IL

(013)
 DIFU 001000

(003)
 ILC

0000
00

0000
01
37

Basic Concepts Section 2-1
2-1-10 Refresh Timing
The following methods are used to refresh external I/O.

• Cyclic refresh

• Immediate refresh (! specified instruction, IORF instruction)

Refer to the section on CPU Unit operation in the CS/CJ Series Operation
Manual for details on the I/O refresh.

Cyclic Refresh
Every program allocated to a ready cyclic task or a task where interrupt condi-
tion has been met will execute starting from the beginning program address
and will run until the END(001) instruction. After all ready cyclic tasks or tasks
where interrupt condition have been met have executed, cyclic refresh will
refresh all I/O points at the same time.

Note Programs can be executed in multiple tasks. I/O will be refreshed after the
final END(001) instruction in the program allocated to the highest number
(among all ready cyclic tasks) and will not be refreshed after the END(001)
instruction in programs allocated to other cyclic tasks.

Execute an IORF instruction for all required words prior to the END(001)
instruction if I/O refreshing is required in other tasks.

Immediate Refresh

Instructions with Refresh
Variation (!)

I/O will be refreshed as shown below when an instruction is executing if an
real I/O bit is specified as an operand.

CIO 0001

15 0

CIO 0002

15 0

CIO 0003

15 0

CIO 0004

15 0

Top

I/O refresh

Top

Cyclic refresh
(batch processing)

All real data

16-bit units

16-bit units

! LD 000101

! OUT 000209

END

! MOV 0003

END

Units Refreshed data

C200H Basic I/O Units (CS Series only) I/O will be refreshed for the 16 bits con-
taining the bit.CJ Basic I/O Units
38

Basic Concepts Section 2-1
• When a word operand is specified for an instruction, I/O will be refreshed
for the 16 bits that are specified.

• Inputs will be refreshed for input or source operand just before an instruc-
tion is executed.

• Outputs will be refreshed for outputs or destination (D) operands just after
an instruction is execute.

Add an exclamation mark (!) (immediate refresh option) in front of the instruc-
tion.

Units Refreshed for I/O REFRESH Instruction

Note C200H I/O Units cannot be mounted to CJ-series PLCs.

Location CPU or Expansion I/O Rack (but not SYSMAC BUS Slave Racks)

Units Basic I/O Units CS/CJ-series Basic I/O
Units

Refreshed

C200H Basic I/O Unit (See
note.)

Refreshed

C200H Group-2 High-den-
sity I/O Units (See note.)

Not refreshed

Special I/O Units Not refreshed

Top
 .
 .
 .
!LD 000101
 .
 .
 .
!OUT 000209
 .
 .
 .
END

Top
 .
 .
 .
!MOV 0003

 0004 .
 .
 .
END

Input

Output

S

D

CIO 0001

CIO 0002

15 0

15 0

CIO 0003

CIO 0004

15 0

15 0

All real I/O

Immediate refresh

16-bit units

I/O refresh

Cyclic refresh
(batch processing)

16-bit units

I/O refresh
39

Basic Concepts Section 2-1
Units Refreshed for
IORF(097) or DLNK(226)

An I/O REFRESH (IORF(097)) instruction that refreshes real I/O data in a
specified word range is available as a special instruction. All or just a specified
range of real I/O data can be refreshed during a cycle with this instruction.
IORF can also be used to refresh words allocated to Special I/O Units.

Another instruction, CPU BUS UNIT REFRESH (DLNK(226)) is available to
refresh the words allocated to CPU Bus Units in the CIO and DM Areas, as
well as to perform special refreshing for the Unit, such as refreshing data
links. DLNK(226) is supported only by CS1-H, CJ1-H, or CJ1M CPU Units.

Units Refreshed for IORF(097)

Units Refreshed for DLNK(226)

Location CPU or Expansion I/O Rack (but not SYSMAC BUS Slave Racks)

Units Basic I/O Units CS/CJ-series Basic I/O Units Refreshed

C200H Basic I/O Units Refreshed

C200H Group-2 High-den-
sity I/O Units

Refreshed

Special I/O Units Refreshed

CPU Bus Units Not refreshed

Location CPU or Expansion I/O Rack (but not SYSMAC BUS Slave Racks)

Units Basic I/O Units Not refreshed

Special I/O Units Not refreshed

CPU Bus Units
Words allocated to the Unit in CIO Area
Words allocated to the Unit in DM Area

Special refreshing for the Unit (data links for
Controller Link Units and SYSMAC Link Units
or remote I/O for DeviceNet Units)

Refreshed

Real I/O for a specified
word range

IORF

 0002

 0009

Partial or
full refresh

DLNK

#F

Words allocated in
CIO Area and DM
Area and any
special refreshing

CPU Bus Unit with
unit number F.
40

Basic Concepts Section 2-1
2-1-11 Program Capacity
The maximum program capacities of the CS/CJ-series CPU Units for all user
programs (i.e., the total capacity of all tasks) are given in the following table.
All capacities are given as the maximum number of steps. The capacities
must not be exceeded, and writing the program will be disabled if an attempt
is made to exceed the capacity.

Each instruction is from 1 to 7 steps long. Refer to 10-5 Instruction Execution
Times and Number of Steps in the Operation Manual for the specific number
of steps in each instruction. (The length of each instruction will increase by 1
step if a double-length operand is used.)

Note Memory capacity for CS/CJ-series PLCs is measured in steps, whereas
memory capacity for previous OMRON PLCs, such as the C200HX/HG/HE
and CV-series PLCs, was measured in words. Refer to the information at the
end of10-5 Instruction Execution Times and Number of Steps in the Operation
Manual for your PLC for guidelines on converting program capacities from
previous OMRON PLCs.

2-1-12 Basic Ladder Programming Concepts
Instructions are executed in the order listed in memory (mnemonic order). The
basic programming concepts as well as the execution order must be correct.

Series CPU Unit Max. program capacity I/O points

CS Series CS1H-CPU67H/CPU67-E 250K steps 5,120

CS1H-CPU66H/CPU66-E 120K steps

CS1H-CPU65H/CPU65-E 60K steps

CS1H-CPU64H/CPU64-E 30K steps

CS1H-CPU63H/CPU63-E 20K steps

CS1G-CPU45H/CPU45-E 60K steps

CS1G-CPU44H/CPU44-E 30K steps 1,280

CS1G-CPU43H/CPU43-E 20K steps 960

CS1G-CPU42H/CPU42-E 10K steps

CJ Series CJ1H-CPU66H 120K steps 2,560

CJ1H-CPU65H 60K steps

CJ1G-CPU45H/CPU45 60K steps 1280

CJ1G-CPU44H/CPU44 30K steps

CJ1G-CPU43H 20K steps 960

CJ1G-CPU42H 10K steps

CJ1M-CPU23/CPU13 20K steps 640

CJ1M-CPU22/CPU12 10K steps 320
41

Basic Concepts Section 2-1
General Structure of the
Ladder Diagram

A ladder diagram consists of left and right bus bars, connecting lines, input
bits, output bits, and special instructions. A program consists of one or more
program runs. A program rung is a unit that can be partitioned when the bus is
split horizontally. In mnemonic form, a rung is all instructions from a LD/LD
NOT instruction to the output instruction just before the next LD/LD NOT
instructions. A program rung consists of instruction blocks that begin with an
LD/LD NOT instruction indicating a logical start.

Mnemonics A mnemonic program is a series of ladder diagram instructions given in their
mnemonic form. It has program addresses, and one program address is
equivalent to one instruction. Program addresses contain six digits starting
from 000000.

Left bus bar

Input bit
Connecting line

Special
instruction

Output bit

Right bus bar

Rungs Instruction blocks

Program Address Instruction (Mnemonic) Operand

000000 LD 000000

000001 AND 000001

000002 LD 000002

000003 AND NOT 000003

000004 LD NOT 000100

000005 AND 000101

000006 OR LD

000007 AND LD

000008 OUT 000200

000009 END

Example
42

Basic Concepts Section 2-1
Basic Ladder Program Concepts

1,2,3... 1. The power flow in a program is from left to right. Power flows in rungs “a”
and “b” as though diodes were inserted. Rungs must be changed to pro-
duce operation that would be the same as ordinary circuits without a di-
odes. Instructions in a ladder diagram are executed in order from the left
bus bar to the right bus bar and from top to bottom. This is the same order
as the instructions are listed in mnemonic form.

Order of execution Mnemonic
(1)LD A (9) AND E
(2)LD C (10)OUT R2
(3)OUT TR0 (11)LD A
(4)AND D (12)AND B
(5)OR LD (13)OUT R1
(6)AND B (14)LD C
(7)OUT R1 (15)AND D
(8)LD TR0 (16)OUT R2

2. There is no limit to the number of I/O bits, work bits, timers, and other input
bits that can be used. Rungs, however, should be kept as clear and simple
as possible even if it means using more input bits to make them easier to
understand and maintain.

3. There is no limit to the number of input bits that can be connected in series
or in parallel in series or parallel rungs.

4. Two or more output bits can be connected in parallel.

Signal flow
A

C

A

C

D

E

B

D

B

R1

R2

R1

R2

(1)

(2) (3) (4)

(5)
(6) (7)

(8) (9)
(10)

(13)

(16)

(11) (12)

(14) (15)

a

b

TIM 0000 #0100

0002
00

0000
00

0000
05
43

Basic Concepts Section 2-1
5. Output bits can also be used as input bits.

Restrictions

1,2,3... 1.A ladder program must be closed so that signals (power flow) will flow
from the left bus bar to the right bus bar. A rung error will occur if the pro-

gram is not closed (but the program can be executed).

2. Output bits, timers, counters and other output instructions cannot be con-
nected directly to the left bus bar. If one is connected directly to the left bus
bar, a rung error will occur during the programming check by a Program-
ming Device. (The program can be executed, but the OUT and MOV(021)
will not be executed.)

Insert an unused input N.C. work bit or an ON Flag (Always ON Flag) as a
dummy if the input must be kept ON at all times.

0002
00

0002
00

MOV

Input condition must be provided.

Unused work bit

ON (Always ON Flag)
MOV
44

Basic Concepts Section 2-1
3. An input bit must always be inserted before and never after an output in-
struction like an output bit. If it is inserted after an output instruction, then
a location error will occur during a Programming Device program check.

4. The same output bit cannot be programmed in an output instruction more
than once. If it is, a duplicate output bit error will occur and output instruc-
tion programmed first will not operate. The results of the second rung will
be output.

5. An input bit cannot be used in an OUTPUT instruction (OUT).

6. The total number –1 of LD/LD NOT instructions minus one indicating logi-
cal starts must match the total number of AND LD and OR LD instructions
connecting the instruction blocks. If they do not match, then a rung error
will occur during a Programming Device program check.

7. An END(001) instruction must be inserted at the end of the program in
each task.

• If a program without an END(001) instruction starts running, a program
error indicating No End Instruction will occur, the ERR/ALM LED on the
front of the CPU Unit will light, and the program will not be executed.

• If a program has more than one END(001) instruction, then the program
will only run until the first END(001) instruction.

0002
01

0000
00

0000
03

0000
04

0000
01

0002
01

0000
00

0000
00

(Output bit)

(Output bit)

0000
00

(Input bit)

Example

LD A 3
OR B
LD C
OR D
AND LD 2
LD E
OR F
AND LD
OUT G

A

B

C

D

E

F

G

45

Basic Concepts Section 2-1
• Debugging programs will run much smoother if an END(001) instruction is
inserted at various break points between sequence rungs and the
END(001) instruction in the middle is deleted after the program is
checked.

2-1-13 Inputting Mnemonics
A logical start is accomplished using an LD/LD NOT instruction. The area
from the logical start until the instruction just before the next LD/LD NOT
instruction is considered a single instruction block.

Create a single rung consisting of two instruction blocks using an AND LD
instruction to AND the blocks or by using an OR LD instruction to OR the
blocks. The following example shows a complex rung that will be used to
explain the procedure for inputting mnemonics (rung summary and order).

END

000000
000001

END

000000
000001

END

000000
000001

END

000000
000001

END

000000
000001

END

END

000000
000001

END

Task (program) Task (program)

Task (program) Task (program)

Task (program) Task (program)

Will not be executed.

Will not be executed.
46

Basic Concepts Section 2-1
1,2,3... 1. First separate the rung into small blocks (a) to (f).

0000
00

0000
01

(a)

0010
00

0010
01

(b)

(1)

0005
00

(c)

(2)

0000
02

(d) 0000
03

(3)

0000
04

0000
05

(e)

0000
06

(f)

(4)

(5)

0000
03

0000
00

0000
01

0000
02

0010
00

0005
00

0000
04

0000
05

0010
01

0005
00

0000
06
47

Basic Concepts Section 2-1
• Program the blocks from top to bottom and then from left to right.

0000
00

(a) 0000
01

LD 000000
AND 000001

0010
00

(b) 0010
01

LD 001000
AND 001001

OR LD

0005
00

(c)

OR 000500

0000
02

(a)

AND 000002
AND NOT 000003

0000
03

(c)

0000
06

(f)

OR 000006

0000
04

0000
05

LD 000004
AND 000005

AND LD

0005
00

OUT 000500

(1)

(2)

(3)

(4)

(5)

Address Instruction Operand

 000200 LD 000000
 000201 AND 000001

 000202 LD 001000
 000203 AND 001001
 000204 OR LD ---
 000205 OR 000500
 000206 AND 000002
 000207 AND NOT 000003
 000208 LD 000004

 000209 AND 000005

 000210 OR 000006
 000211 AND LD ---

 000212 OUT 000500

(a)

(b)

(c)

(d)

(e)

(f)

(1) (2)

(3)

(4)

(5)
48

Basic Concepts Section 2-1
2-1-14 Program Examples
1,2,3... 1. Parallel/Series Rungs

2. Series/Parallel Rungs

A block B block

 Program the parallel instruction in the A block and then the B block.

0000
03

0000
00

0000
01

0000
02

0002
00

Instruction Operands

LD
AND
OR
AND
AND NOT 000003
OUT

0002
00

a b

a

b

000000
000001
000200
000002

000200

A block B block

• Separate the rung into A and B blocks, and program each individually.

• Connect A and B blocks with an AND LD.

A block B block

• Program B1 block and then program B2 block.

• Connect B1 and B2 blocks with an OR LD and then A and B blocks with an
AND LD.

• Program A block.

B1 block

B2 block

LD 000000
AND NOT 000001
LD 000002
AND 000003
OR 000201

OR 000004
AND LD ---
OUT 000201

0000
01

0000
00

0000
03

0000
02

0002
01

Instruction Operands0002
01

a b

a

b
0000
04

LD NOT 000000
AND 000001
LD 000002
AND NOT 000003
LD NOT 000004

AND 000202
OR LD ---
AND LD ---

OUT 000202

0000
00

0000
01

0000
02

0002
02

Instruction Operands

0002
02

a b

a0000
03

0000
04

b2

b1

b1

b2

b1 + b2

a • b
49

Basic Concepts Section 2-1
3. Example of series connection in a series rung

A block B block

 Program A1 block, program A2 block, and and then connect A1 and A2
blocks with an OR LD.

 Program B1 and B2 the same way.

 Repeat for as many A to n blocks as are present.

 Connect A block and B block with an AND LD.

B1 block

B2 block

A1 block

A2 block

A block B block C block n block

LD

AND NOT 000001
LD NOT 000002
AND
OR LD ---
LD

AND
LD
AND

OR LD ---

AND LD ---

OUT

0000
01

0000
00

0000
04

0002
07

Instruction Operands

0002
03

a b

a1

a1 b1

a2

b2

b1 + b2

a b

0002
03

0000
02

0000
05

0002
06

a2 b2

b1

a1 + a2

0005
00

a b c n

000000

000003

000004

000005
000006
000007

000203
50

Basic Concepts Section 2-1
4. Complex Rungs

The diagram above is based on the diagram below.

A simpler program can be written by rewriting
this as shown below.

The above rung can be rewritten as follows:

Block

Block

Block

Block

Block

LD 000000

LD 000001
LD 000002
AND 000003
OR LD ---
AND LD ---

LD 000004
AND 000005
OR LD ---
LD 000006
AND 000007
OR LD ---
OUT 000204

Instruction Operand

Z

0000
00

0000
03

0000
01

0000
02

0002
04

0000
05

0000
04

0000
07

0000
06

0000
00

0000
03

0000
01

0000
02

Z
0000
00

Z

0000
03

0000
02

0000
00

0000
01

0000
00

0000
03

0000
02

0002
04

0000
05

b

0000
01

a d

0000
04

0000
06

0000
07

e

c

LD 000000

LD NOT 000001
AND 000002
LD 000003

AND NOT 000004
LD 000005
LD 000006
AND NOT 000007
OR LD ---

AND LD ---
OR LD ---
AND LD ---
OUT 000205

Instruction Operand

b

a

c

d

e

d + e
(d + e) • c

(d + e) • c + b

((d + e) • c + b) • a

0000
00

0000
03

0000
02

0002
05

0000
03

0000
01

0000
00

0000
05

0000
04

0000
06

0000
04

0000
07

0000
00
51

Basic Concepts Section 2-1
0000
00 H00000

0000
03

0000
01

H00000

0002
06

0000
02 T0001

TIM 0001 #0100 10 sec

LD
OR
OR
OR
AND NOT 000003
OUT

TIM
0100

AND

OUT

Instruction OperandReset input

Error input

Error display

If a holding bit is in use, the ON/OFF status would
be held in memory even if the power is turned OFF,
and the error signal would still be in effect when
power is turned back ON.

000000
000001
000002

H00000

H00000

0001

T0001
000206
52

Basic Concepts Section 2-1
5. Rungs Requiring Caution or Rewriting

OR Instructions
With an OR/OR NOT instruction, an OR is taken with current execution condition, i.e., the results of
ladder logic up to the OR/OR NOT instruction.
In the example at the left, an OR LD instruction will be needed if the rungs are programmed as
shown without modification. A few steps can be eliminated by rewriting the rungs as shown.

Output Instruction Branches
A TR bit will be needed if there is a branch before an AND/AND NOT instruction. The TR bit will
not be needed if the branch comes a point that is connected directly to the first output instruction.
After the first output instruction, an AND/AND NOT instruction and the second output instruction
can be connected without modification.
In the example at the left, a temporary storage bit TR0 output instruction and load (LD) instruction
are needed at a branch point if the rungs are programmed without modification. A few steps can
be eliminated by rewriting the rungs. See the following pages for more information on TR bits.

In the example below, use TR0 to store the execution condition at the branch point or rewrite the
rungs.

0000
00

0000
01

0002
07

0002
07

0000
01

0000
00

0002
07

0002
07

0000
00

0000
01

0002
08

0000
00

0002
09

0002
09

TR0

0002
08

0000
01

0000
00

0000
03

0002
11

0000
01

0002
11

TR0

0002
12

0000
01

0000
02

0002
12

0000
04

0000
02

0000
03

0000
00

0000
04

0000
01

0000
00

0010
00

0000
00

0000
00

0002
10

0002
10

0010
00

0010
00

0010
00

Mnemonic Execution Order
CIO 000210 shown below will never turn ON because the PLC executes instructions in mnemonic
order. By rewriting the rung, CIO 000201 can be turned ON for one cycle.
53

Precautions Section 2-2
2-2 Precautions

2-2-1 Condition Flags
Using Condition Flags Conditions flags are shared by all instructions, and will change during a cycle

depending on results of executing individual instructions. Therefore, be sure
to use Condition Flags on a branched output with the same execution condi-
tion immediately after an instruction to reflect the results of instruction execu-
tion. Never connect a Condition Flag directly to the bus bar because this will
cause it to reflect execution results for other instructions.

Example: Using Instruction A Execution Results

The same execution condition (a) is used for instructions A and B to execute
instruction B based on the execution results of instruction A. In this case,
instruction B will be executed according to the Condition Flag only if instruc-
tion A is executed.

Rewrite the rungs on the left. They cannot be executed.

The arrows show signal (power flow) flow when the rung consists of control relays.

A

C

B

D

R1

R2

E

A

C

B

D

E

A

C

E

R1

R2

Correct Use

Instruction A

Condition Flag
Example: =

Reflects instruction A
execution results.

Instruction B

LD a
Instruction A
AND =
Instruction B

Instruction Operand

Mnemonic

Incorrect Use

Preceding r ung

Condition Flag
Example: =

Reflects the execution results of
the preceding rung if instruction
A is not e xecuted.

Instruction B

Instruction A
54

Precautions Section 2-2
If the Condition Flag is connected directly to the left bus bar, instruction B will
be executed based on the execution results of a previous rung if instruction A
is not executed.

Note Condition Flags are used by all instruction within a single program (task) but
they are cleared when the task switches. Therefore execution results in the
preceding task will not be reflected later tasks. Since conditions flags are
shared by all instructions, make absolutely sure that they do not interfere with
each other within a single ladder-diagram program. The following is an exam-
ple.

Using Execution Results in N.C. and N.C. Inputs

The Condition Flags will pick up instruction B execution results as shown in
the example below even though the N.C. and N.O. input bits are executed
from the same output branch.

Make sure each of the results is picked up once by an OUTPUT instruction to
ensure that execution results for instruction B will be not be picked up.

Condition Flag
Example: =

Reflects instruction A execution
results.

Condition Flag
Example: =

Reflects instruction B execution
results.

Instruction B

Instruction A

Incorrect
Use

Condition Flag
Example: =

Reflects instruction A
execution results.

Instruction B

Instruction A

Reflects instruction A
execution results.Condition Flag

Example: =

Correct
Use
55

Precautions Section 2-2
Example: The following example will move #0200 to D00200 if D00100 con-
tains #0010 and move #0300 to D00300 if D00100 does not contain #0010.

The Equals Flag will turn ON if D00100 in the rung above contains #0010.
#0200 will be moved to D00200 for instruction (1), but then the Equals Flag
will be turned OFF because the #0200 source data is not 0000 Hex. The MOV
instruction at (2) will then be executed and #0300 will be moved to D0300. A
rung will therefore have to be inserted as shown below to prevent execution
results for the first MOVE instruction from being picked up.

Reflects CMP execution results.

Reflects MOV execution results.

(1)

(2)

Incorrect
Use

Reflects CMP execution results.

Correct
Use
56

Precautions Section 2-2
Using Execution Results from Differentiated Instructions

With differentiated instructions, execution results for instructions are reflected
in Condition Flags only when execution condition is met, and results for a pre-
vious rung (rather than execution results for the differentiated instruction) will
be reflected in Condition Flags in the next cycle. You must therefore be aware
of what Condition Flags will do in the next cycle if execution results for differ-
entiated instructions to be used.

In the following for example, instructions A and B will execute only if execution
condition C is met, but the following problem will occur when instruction B
picks up execution results from instruction A. If execution condition C remains
ON in the next cycle after instruction A was executed, then instruction B will
unexpectedly execute (by the execution condition) when the Condition Flag
goes from OFF to ON because of results reflected from a previous rung.

In this case then, instructions A and B are not differentiated instructions, the
DIFU (of DIFD) instruction is used instead as shown below and instructions A
and B are both upwardly (or downwardly) differentiated and executed for one
cycle only.

Note The CS1-H, CJ1-H, or CJ1M CPU Units support instructions to save and load
the Condition Flag status (CCS(282) and CCL(283)). These can be used to
access the status of the Condition Flags at other locations in a task or in a dif-
ferent task.

Main Conditions Turning ON Condition Flags

Error Flag

The ER Flag will turn ON under special conditions, such as when operand
data for an instruction is incorrect. The instruction will not be executed when
the ER Flag turns ON.

Previous rung

Instruction A

Instruction B

Condition Flag
Example: =

Reflects execution results for instruction A
when execution condition is met.
Reflects execution results for a previous
rung in the next cycle.

Incorrect
Use

Previous rung

Instruction A

Instruction B

Condition Flag
Example: =

Reflects instruction A execution results.

Correct
Use
57

Precautions Section 2-2
When the ER Flag is ON, the status of other Condition Flags, such as the <,
>, OF, and UF Flags, will not change and status of the = and N Flags will vary
from instruction to instruction.

Refer to the descriptions of individual instructions in the CS/CJ-series Pro-
grammable Controllers Programming Manual (W340) for the conditions that
will cause the ER Flag to turn ON. Caution is required because some instruc-
tions will turn OFF the ER Flag regardless of conditions.

Note The PLC Setup Settings for when an instruction error occurs determines
whether operation will stop when the ER Flag turns ON. In the default setting,
operation will continue when the ER Flag turns ON. If Stop Operation is spec-
ified when the ER Flag turns ON and operation stops (treated as a program
error), the program address at the point where operation stopped will be
stored at in A298 to A299. At the same time, A29508 will turn ON.

Equals Flag

The Equals Flag is a temporary flag for all instructions except when compari-
son results are equal (=). It is set automatically by the system, and it will
change. The Equals Flag can be turned OFF (ON) by an instruction after a
previous instruction has turned it ON (OFF). The Equals Flag will turn ON, for
example, when MOV or another move instruction moves 0000 Hex as source
data and will be OFF at all other times. Even if an instruction turns the Equals
Flag ON, the move instruction will execute immediately and the Equals Flag
will turn ON or OFF depending on whether the source data for the move
instruction is 0000 Hex or not.

Carry Flag

The CY Flag is used in shift instructions, addition and subtraction instructions
with carry input, addition and subtraction instruction borrows and carries, as
well as with Special I/O Unit instructions, PID instructions, and FPD instruc-
tions. Note the following precautions.

Note 1. The CY Flag can remain ON (OFF) because of execution results for a cer-
tain instruction and then be used in other instruction (an addition and sub-
traction instruction with carry or a shift instruction). Be sure to clear the
Carry Flag when necessary.

2. The CY Flag can be turned ON (OFF) by the execution results for a certain
instruction and be turned OFF (ON) by another instruction. Be sure the
proper results are reflected in the Carry Flag when using it.

Less Than and Greater Than Flags

The < and > Flags are used in comparison instruction, as well as in the LMT,
BAND, ZONE, PID and other instructions.
The < or > Flag can be turned OFF (ON) by another instruction even if it is
turned ON (OFF) by execution results for a certain instruction.

Negative Flag

The N Flag is turned OFF when the leftmost bit of the instruction execution
results word is “1” for certain instructions and it is turned OFF unconditionally
for other instruction.

Specifying Operands for Multiple Words

With the CS/CJ-series PLCs, an instruction will be executed as written even if
an operand requiring multiple words is specified so that all of the words for the
operand are not in the same area. In this case, words will be taken in order of
the PLC memory addresses. The Error Flag will not turn ON.
58

Precautions Section 2-2
As an example, consider the results of executing a block transfer with
XFER(070) if 20 words are specified for transfer beginning with W500. Here,
the Work Area, which ends at W511, will be exceeded, but the instruction will
be executed without turning ON the Error Flag. In the PLC memory
addresses, the present values for timers are held in memory after the Work
Area, and thus for the following instruction, W500 to W511 will be transferred
to D00000 to D00011 and the present values for T0000 to T0007 will be trans-
ferred to D00012 to D00019.

Note Refer to Appendix D Memory Map of PLC Memory Addresses for specific
PLC memory addresses.

2-2-2 Special Program Sections
CS/CJ-series programs have special program sections that will control
instruction conditions. The following special program sections are available.

Instruction Combinations

The following table shows which of the special instructions can be used inside
other program sections.

T0000

Number of words

First source word

First destination word

Trans-
ferred.to to to to

to to to to

W500

W511
&10

Program section Instructions Instruction condition Status

Subroutine SBS, SBN and RET instruc-
tions

Subroutine program is exe-
cuted.

The subroutine program sec-
tion between SBN and RET
instructions is executed.

IL - ILC section IL and ILC instructions Section is interlocked The output bits are turned
OFF and timers are reset.
Other instructions will not be
executed and previous status
will be maintained.

Step Ladder section STEP S instructions and
STEP instructions

FOR-NEXT loop FOR instructions and NEXT
instructions

Break in progress. Looping

JMP0 - JME0 section JMP0 instructions and JME0
instructions

Jump

Block program section BPRG instructions and
BEND instructions

Block program is executing. The block program listed in
mnemonics between the
BPRG and BEND instruc-
tions is executed.

Subroutine IL - ILC
section

Step ladder
section

FOR - NEXT
loop

JMP0 - JME0
section

Block program
section

Subroutine Not possible. Not possible. Not possible. Not possible. Not possible. Not possible.

IL - ILC OK Not possible. Not possible. OK OK Not possible.

Step ladder
section

Not possible. OK Not possible. Not possible. OK Not possible.

FOR - NEXT
loop

OK OK Not possible. OK OK Not possible.

JMP0 - JME0 OK OK Not possible. Not possible. Not possible. Not possible.

Block pro-
gram section

OK OK OK Not possible. OK Not possible.
59

Precautions Section 2-2
Note Instructions that specify program areas cannot be used for programs in other
tasks. Refer to �!�!������������	'�����+�%�������� for details.

Subroutines Place all the subroutines together just before the END(001) instruction in all
programs but after programming other than subroutines. (Therefore, a subrou-
tine cannot be placed in a step ladder, block program, FOR - NEXT, or JMP0 -
JME0 section.) If a program other than a subroutine program is placed after a
subroutine program (SBN to RET), that program will not be executed.

Instructions Not Available
in Subroutines

The following instructions cannot be placed in a subroutine.

Note Block Program Sections
A subroutine can include a block program section. If, however, the block pro-
gram is in WAIT status when execution returns from the subroutine to the
main program, the block program section will remain in WAIT status the next
time it is called.

Program

Subroutine

Program

Subroutine

Function Mnemonic Instruction

Process Step Control STEP(008) Define step ladder section

SNXT(009) Step through the step lad-
der
60

Precautions Section 2-2
Instructions Not Available
in Step Ladder Program
Sections

Note 1. A step ladder program section can be used in an interlock section (be-
tween IL and ILC). The step ladder section will be completely reset when
the interlock is ON.

2. A step ladder program section can be used between MULTIPLE JUMP
(JMP0) and MULTIPLE JUMP END (JME0).

Function Mnemonic Instruction

Sequence Control FOR(512), NEXT(513), and
BREAK(514)

FOR, NEXT, and BREAK
LOOP

END(001) END

IL(002) and ILC(003) INTERLOCK and INTER-
LOCK CLEAR

JMP(004) and JME(005) JUMP and JUMP END

CJP(510) and CJPN(511) CONDITIONAL JUMP and
CONDITIONAL JUMP NOT

JMP0(515) and JME0(516) MULTIPLE JUMP and MULTI-
PLE JUMP END

Subroutines SBN(092) and RET(093) SUBROUTINE ENTRY and
SUBROUTINE RETURN

Block Programs IF(802) (NOT), ELSE(803),
and IEND(804)

Branching instructions

BPRG(096) and BEND(801) BLOCK PROGRAM BEGIN/
END

EXIT(806) (NOT) CONDITIONAL BLOCK EXIT
(NOT)

LOOP(809) and LEND(810)
(NOT)

Loop control

WAIT(805) (NOT) ONE CYCLE WAIT (NOT)

TIMW(813) TIMER WAIT

TMHW(815) HIGH-SPEED TIMER WAIT

CNTW(814) COUNTER WAIT

BPPS(811) and BPRS(812) BLOCK PROGRAM PAUSE
and RESTART
61

Precautions Section 2-2
Instructions Not Available
in Block Program Sections

The following instructions cannot be placed in block program sections.

Note 1. Block programs can be used in a step ladder program section.

2. A block program can be used in an interlock section (between IL and ILC).
The block program section will not be executed when the interlock is ON.

3. A block program section can be used between MULTIPLE JUMP (JMP0)
and MULTIPLE JUMP END (JME0).

4. A JUMP instruction (JMP) and CONDITIONAL JUMP instruction (CJP/
CJPN) can be used in a block program section. JUMP (JMP) and JUMP
END (JME) instructions, as well as CONDITIONAL JUMP (CJP/CJPN)
and JUMP END (JME) instructions cannot be used in the block program
section unless they are used in pairs. The program will not execute prop-
erly unless these instructions are paired.

Classification by
Function

Mnemonic Instruction

Sequence Control FOR(512), NEXT(513),
and BREAK(514)

FOR, NEXT, and BREAK
LOOP

END(001) END

IL(002) and ILC(003) INTERLOCK and INTER-
LOCK CLEAR

JMP0(515) and JME0(516) MULTIPLE JUMP and
MULTIPLE JUMP END

Sequence Input UP(521) CONDITION ON

DOWN(522) CONDITION OFF

Sequence Output DIFU DIFFERENTIATE UP

DIFD DIFFERENTIATE DOWN

KEEP KEEP

OUT OUTPUT

OUT NOT OUTPUT NOT

Timer/Counter TIM TIMER

TIMH HIGH-SPEED TIMER

TMHH(540) ONE-MS TIMER

TTIM(087) ACCUMULATIVE TIMER

TIML(542) LONG TIMER

MTIM(543) MULTI-OUTPUT TIMER

CNT COUNTER

CNTR REVERSIBLE COUNTER

Subroutines SBN(092) and RET(093) SUBROUTINE ENTRY
and SUBROUTINE
RETURN

Data Shift SFT SHIFT

Ladder Step Control STEP(008) and
SNXT(009)

STEP DEFINE and STEP
START

Data Control PID PID CONTROL

Block Program BPRG(096) BLOCK PROGRAM
BEGIN

Damage Diagnosis FPD(269) FAILURE POINT DETEC-
TION
62

Checking Programs Section 2-3
2-3 Checking Programs
CS/CJ-series programs can be checked at the following stages.

• Input check during Programming Console input operations

• Program check by CX-Programmer

• Instruction check during execution

• Fatal error check (program errors) during execution

2-3-1 Errors during Programming Device Input
Programming Console

Errors at the following points will be displayed on the Programming Console
during input.

CX-Programmer

The program will be automatically checked by the CX-Programmer at the fol-
lowing times.

The results of checking are output to the text tab of the Output Window. Also,
the left bus bar of illegal program sections will be displayed in red in ladder
view.

2-3-2 Program Checks with the CX-Programmer
The errors that are detected by the program check provided by the CX-Pro-
grammer are listed in the following table.

The CX-Programmer does not check range errors for indirectly addressed
operands in instructions. Indirect addressing errors will be detected in the pro-
gram execution check and the ER Flag will turn ON, as described in the next
section. Refer to the CS/CJ-series Programmable Controllers Programming
Manual (W340) for details.

When the program is checked on the CX-Programmer, the operator can spec-
ify program check levels A, B, and C (in order of the seriousness of the error),
as well as a custom check level.

Error display Cause

CHK MEM Pin 1 on the DIP switch on the CPU Unit is set to ON (write-protect).

IO No. ERR An illegal I/O input has been attempted.

Timing Checked contents

When inputting
ladder diagrams

Instruction inputs, operand inputs, programming patterns

When loading
files

All operands for all instructions and all programming patterns

When download-
ing files

Models supported by the CS/CJ Series and all operands for all
instructions

During online
editing

Capacity, etc.

Area Check
Illegal data: Ladder
diagramming

Instruction locations
I/O lines
Connections
Instruction and operation completeness

Instruction support
by PLC

Instructions and operands supported by PLC
Instruction variations (NOT, !, @, and %)
Object code integrity
63

Checking Programs Section 2-3
Note Output duplication is not checked between tasks, only within individual tasks.

Operand ranges Operand area ranges
Operand data types
Access check for read-only words
Operand range checks, including the following.
• Constants (#, &, +, –)

• Control codes
• Area boundary checks for multi-word operands
• Size relationship checks for multi-word operands

• Operand range overlaps
• Multi-word allocations
• Double-length operands

• Area boundary checks for offsets
Program capacity
for PLC

Number of steps
Overall capacity
Number of tasks

Syntax Call check for paired instructions

• IL–ILC
• JMP–JME, CJP/CJPN-JME
• SBS–SBN–RET, MCRO–SBN–RET

• STEP–SNXT
• BPRG–BEND
• IF–IEND

• LOOP–LEND
Restricted programming locations for BPRG–BEND
Restricted programming locations for SBN–RET
Restricted programming locations for STEP–SNXT
Restricted programming locations for FOR–NEXT
Restricted programming locations for interrupt tasks
Required programming locations for BPRG–BEND
Required programming locations for FOR–NEXT
Illegal nesting
END(001) instruction
Number consistency

Ladder diagram
structure

Stack overflows

Output duplication Duplicate output check
• By bit

• By word
• Timer/counter instructions
• Long words (2-word and 4-word)

• Multiple allocated words
• Start/end ranges
• FAL numbers

• Instructions with multiple output operands
Tasks Check for tasks set for starting at beginning of operation

Task program allocation

Area Check
64

Checking Programs Section 2-3
Multi-word Operands Memory area boundaries are checked for multi-word operands for the pro-
gram check as shown in the following table.

2-3-3 Program Execution Check
Operand and instruction location checks are performed on instructions during
input from Programming Devices (including Programming Consoles) as well
as during program checks from Programming Devices (excluding Program-
ming Consoles). However, these are not final checks.

The following checks are performed during instruction execution.

Instruction Processing Errors

An instruction processing error will occur if incorrect data was provided when
executing an instruction or an attempt was made to execute an instruction out-
side of a task. Here, data required at the beginning of instruction processing
was checked and as a result, the instruction was not executed, the ER Flag
(Error Flag) will be turned ON and the EQ and N Flags may be retained or
turned OFF depending upon the instruction.

The ER Flag (error Flag) will turn OFF if the instruction (excluding input
instructions) ends normally. Conditions that turn ON the ER Flag will vary with
individual instructions. See descriptions of individual instructions in the CS/
CJ-series Programmable Controllers Programming Manual (W340) for more
details.

If Instruction Errors are set to Stop Operation in the PLC Setup, then opera-
tion will stop (fatal error) and the Instruction Processing Error Flag (A29508)
will turn ON if an instruction processing error occurs and the ER Flag turns
ON.

CX-Programmer Programming
Consoles

The following functionality is provided by the CX-Programmer
for multi-word operands that exceed a memory area boundary.
• The program cannot be transferred to the CPU Unit.

• The program also cannot be read from the CPU Unit.
• Compiling errors are generated for the program check.
• Warnings will appear on-screen during offline programming.

• Warnings will appear on-screen during online editing in
PROGRAM or MONITOR mode.

Checked when pro-
grams are input, i.e.,
operands that
exceed a memory
are boundary can-
not be written.

Type of error Flag that turns ON for error Stop/Continue operation

1.Instruction Processing Error ER Flag
The Instruction Processing Error Flag
(A29508) will also turn ON if Stop
Operation is specified when an error
occurs.

A setting in the PLC Setup can be used
to specify whether to stop or continue
operation for instruction processing
errors. The default is to continue opera-
tion.

A program error will be generated and
operation will stop only if Stop Opera-
tion is specified.

2.Access Error AER Flag
The Access Error Flag (A29510) will
turn ON if Stop Operation is specified
when an error occurs.

A setting in the PLC Setup can be used
to specify whether to stop or continue
operation for instruction processing
errors. The default is to continue opera-
tion.
A program error will be generated and
operation will stop only if Stop Opera-
tion is specified.

3.Illegal Instruction Error Illegal Instruction Error Flag (A29514) Fatal (program error)

4.UM (User Memory) Overflow Error UM Overflow Error Flag (A29515) Fatal (program error)
65

Checking Programs Section 2-3
Illegal Access Errors

Illegal access errors indicate that the wrong area was accessed in one of the
following ways when the address specifying the instruction operand was
accessed.

a) A read or write was executed for a parameter area.

b) A write was executed in a memory area that is not mounted (see note).

c) A write was executed in an EM area specified as EM File Memory.

d) A write was executed in a read-only area.

e) The value specified in an indirect DM/EM address in BCD mode was
not BCD (e.g., *D000001 contains #A000).

Instruction processing will continue and the Error Flag (ER Flag) will not turn
ON if an access error occurs, but the Access Error Flag (AER Flag) will turn
ON.

Note An access error will occur for the following:

• When a specified EM address exceeds 32767 (example: E32768) for
the current bank.

• The final bank (example: C) is specified for an indirect EM address in
BIN mode and the specified word contains 8000 to FFFF Hex (exam-
ple: @EC_00001 contains #8000).

• The current bank (example: C) is specified for an indirect EM address
in BIN mode and the specified words contains 8000 to FFFF Hex (ex-
ample: @EC_00001 contains #8000)

• An IR register containing the internal memory address of a bit is used
as a word address or an IR containing the internal memory address of
a word is used as a bit address.

If Instruction Errors are set to Stop Operation in the PLC Setup, then opera-
tion will stop (fatal error) and the “Illegal Access Error Flag” (A29510) will turn
ON if an illegal access error occurs and the AER Flag turns ON.

Note The Access Error Flag (AER Flag) will not be cleared after a task is executed.
If Instruction Errors are set to Continue Operation, this Flag can be monitored
until just before the END(001) instruction to see if an illegal access error has
occurred in the task program. (The status of the final AER Flag after the entire
user program has been executed will be monitored if the AER Flag is moni-
tored on a Programming Console.)

Other Errors

Illegal Instruction Errors

Illegal instruction errors indicate that an attempt was made to execute instruc-
tion data other than that defined in the system. This error will normally not
occur as long as the program is created on a CS/CJ-series Programming
Device (including Programming Consoles).

In the rare even that this error does occur, it will be treated as a program error,
operation will stop (fatal error), and the Illegal Instruction Flag (A29514) will
turn ON.

UM (User Memory) Overflow Errors

UM overflow errors indicate that an attempt was made to execute instruction
data stored beyond the last address in the user memory (UM) defined as pro-
gram storage area. This error will normally not occur as long as the program is
created on a CS/CJ-series Programming Device (including Programming
Consoles).
66

Checking Programs Section 2-3
In the rare even that this error does occur, it will be treated as a program error,
operation will stop (fatal error), and the UM Overflow Flag (A29515) will turn
ON.

2-3-4 Checking Fatal Errors
The following errors are fatal program errors and the CPU Unit will stop run-
ning if one of these occurs. When operation is stopped by a program error, the
task number where operation stopped will be stored in A294 and the program
address will be stored in A298/A299. The cause of the program error can be
determined from this information.

Note If the Error Flag or Access Error Flag turns ON, it will be treated as a program
error and it can be used to stop the CPU from running. Specify operation for
program errors in the PLC Setup.

Address Description Stored Data

A294 The type of task and the task number at the
point where operation stopped will be stored
here if operation stops due to a program error.
FFFF Hex will be stored if there are no active
cyclic tasks in a cycle, i.e., if there are no cyclic
tasks to be executed.

Cyclic task: 0000 to 001F Hex (cyclic tasks 0 to 31)
Interrupt task: 8000 to 80FF Hex (interrupt tasks 0 to 255)

A298/A299 The program address at the point where opera-
tion stopped will be stored here in binary if
operation stops due to a program error.

If the END(001) instruction is missing (A29511
will be ON), the address where END(001) was
expected will be stored.

If there is a task execution error (A29512 will be
ON), FFFFFFFF Hex will be stored in A298/
A299.

A298: Rightmost portion of program address
A299: Leftmost portion of program address

Program error Description Related flags

No END Instruction An END instruction is not present in the
program.

The No END Flag (A29511) turns ON.

Error During Task Execution No task is ready in the cycle.
No program is allocated to a task.
The corresponding interrupt task num-
ber is not present even though the exe-
cution condition for the interrupt task
was met.

The Task Error Flag (29512) turns ON.

Instruction Processing Error (ER Flag
ON) and Stop Operation set for Instruc-
tion Errors in PLC Setup

The wrong data values were provided
in the operand when an attempt was
made to execute an instruction.

The ER Flag turns ON and the Instruc-
tion Processing Error Flag (A29508)
turns ON if Stop Operation set for
Instruction Errors in PLC Setup.

Illegal Access Error (AER Flag ON) and
Stop Operation set for Instruction
Errors in PLC Setup

A read or write was executed for a
parameter area.
A write was executed in a memory area
that is not mounted (see note).

A write was executed in an EM area
specified as EM File Memory.
A write was executed in a read-only
area.
The value specified in an indirect DM/
EM address in BCD mode was not
BCD.

AER Flag turns ON and the Illegal
Access Error Flag (A29510) turns ON if
Stop Operation set for Instruction
Errors in PLC Setup
67

Checking Programs Section 2-3
Indirect DM/EM BCD Error and Stop
Operation set for Instruction Errors in
PLC Setup

The value specified in an indirect DM/
EM address in BCD mode is not BCD.

AER Flag turns ON and the DM/EM
Indirect BCD Error Flag (A29509) turns
ON if Stop Operation set for Instruction
Errors in PLC Setup

Differentiation Address Overflow Error During online editing, more than
131,071 differentiated instructions have
been inserted or deleted.

The Differentiation Overflow Error Flag
(A29513) turns ON.

UM (User Memory) Overflow Error An attempt was made to execute
instruction data stored beyond the last
address in user memory (UM) defined
as program storage area.

The UM (User Memory) Overflow Flag
(A29516) turns ON.

Illegal Instruction Error An attempt was made to execute an
instruction that cannot be executed.

The Illegal Instruction Flag (A29514)
turns ON.

Program error Description Related flags
68

SECTION 3
Instruction Functions

This section outlines the instructions that can be used to write user programs.

3-1 Sequence Input Instructions . 70

3-2 Sequence Output Instructions . 72

3-3 Sequence Control Instructions . 75

3-4 Timer and Counter Instructions. 78

3-5 Comparison Instructions . 82

3-6 Data Movement Instructions . 86

3-7 Data Shift Instructions . 89

3-8 Increment/Decrement Instructions . 93

3-9 Symbol Math Instructions . 94

3-10 Conversion Instructions. 99

3-11 Logic Instructions . 105

3-12 Special Math Instructions . 107

3-13 Floating-point Math Instructions . 108

3-14 Double-precision Floating-point Instructions (CS1-H, CJ1-H, or CJ1M Only) 112

3-15 Table Data Processing Instructions . 116

3-16 Data Control Instructions . 120

3-17 Subroutine Instructions . 123

3-18 Interrupt Control Instructions . 125

3-19 High-speed Counter and Pulse Output Instructions (CJ1M-CPU22/23 Only) 127

3-20 Step Instructions . 128

3-21 Basic I/O Unit Instructions . 129

3-22 Serial Communications Instructions . 130

3-23 Network Instructions. 131

3-24 File Memory Instructions . 133

3-25 Display Instructions . 134

3-26 Clock Instructions . 134

3-27 Debugging Instructions . 135

3-28 Failure Diagnosis Instructions. 136

3-29 Other Instructions . 137

3-30 Block Programming Instructions . 138

3-31 Text String Processing Instructions. 144

3-32 Task Control Instructions . 147
69

Sequence Input Instructions Section 3-1
3-1 Sequence Input Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

LOAD
LD

@LD
%LD

!LD
!@LD
!%LD

Indicates a logical start and creates an ON/OFF execution condition based
on the ON/OFF status of the specified operand bit. Not required

LOAD NOT
LD NOT

@LD NOT
%LD NOT

!LD NOT
!@LD NOT
!%LD NOT

CS1-H, CJ1-H, or
CJ1M CPU Units
only: @LD NOT
%LD NOT
!@LD NOT
!%LD NOT

Indicates a logical start and creates an ON/OFF execution condition based
on the reverse of the ON/OFF status of the specified operand bit. Not required

AND
AND

@AND
%AND

!AND
!@AND
!%AND

Takes a logical AND of the status of the specified operand bit and the cur-
rent execution condition. Required

AND NOT
 AND NOT

@AND NOT
%AND NOT

!AND NOT
!@AND NOT
!%AND NOT

CS1-H, CJ1-H, or
CJ1M CPU Units
only: @AND NOT
%AND NOT
!@AND NOT
!%AND NOT

Reverses the status of the specified operand bit and takes a logical AND
with the current execution condition. Required

OR
OR

@OR
%OR

!OR
!@OR
!%OR

Takes a logical OR of the ON/OFF status of the specified operand bit and
the current execution condition. Required

OR NOT
OR NOT

@OR NOT
%OR NOT

!OR NOT
!@OR NOT
!%OR NOT

CS1-H, CJ1-H, or
CJ1M CPU Units
only: @OR NOT
%OR NOT
!@OR NOT
!%OR NOT

Reverses the status of the specified bit and takes a logical OR with the cur-
rent execution condition. Required

Bus bar

Starting
point of
block

Bus bar

Starting
point of
block

Bus bar

Bus bar
70

Sequence Input Instructions Section 3-1
AND LOAD
AND LD Required

OR LOAD
OR LD Required

NOT
NOT
520

Reverses the execution condition.
Required

CONDITION ON
UP
521

UP(521) turns ON the execution condition for one cycle when the execu-
tion condition goes from OFF to ON. Required

CONDITION OFF
DOWN

522

DOWN(522) turns ON the execution condition for one cycle when the exe-
cution condition goes from ON to OFF. Required

BIT TEST
LD TST

350

LD TST(350), AND TST(350), and OR TST(350) are used in the program
like LD, AND, and OR; the execution condition is ON when the specified bit
in the specified word is ON and OFF when the bit is OFF.

Not required

BIT TEST
LD TSTN

351

LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the pro-
gram like LD NOT, AND NOT, and OR NOT; the execution condition is OFF
when the specified bit in the specified word is ON and ON when the bit is
OFF.

Not required

BIT TEST
AND TST

350

LD TST(350), AND TST(350), and OR TST(350) are used in the program
like LD, AND, and OR; the execution condition is ON when the specified bit
in the specified word is ON and OFF when the bit is OFF.

Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Logic block Logic block Takes a logical AND between logic blocks.

Logic block A

Logic block B

Serial connection between logic block A and
logic block B.

LD

LD

AND LD

to

to

Logic block

Logic block

Takes a logical OR between logic blocks.

Logic block A

Logic block B

Parallel connection between logic block A
and logic block B.

LD

LD

OR LD

to

to

NOT(520)

UP(521)

DOWN(522)

S: Source word
N: Bit number

TST(350)

S

N

S: Source word
N: Bit number

TSTN(351)

S
N

S: Source word
N: Bit number

AND TST(350)

S

N

71

Sequence Output Instructions Section 3-2
3-2 Sequence Output Instructions

BIT TEST
AND TSTN

351

LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the pro-
gram like LD NOT, AND NOT, and OR NOT; the execution condition is OFF
when the specified bit in the specified word is ON and ON when the bit is
OFF.

Required

BIT TEST
OR TST

350

LD TST(350), AND TST(350), and OR TST(350) are used in the program
like LD, AND, and OR; the execution condition is ON when the specified bit
in the specified word is ON and OFF when the bit is OFF

Required

BIT TEST
OR TSTN

351

LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the pro-
gram like LD NOT, AND NOT, and OR NOT; the execution condition is OFF
when the specified bit in the specified word is ON and ON when the bit is
OFF.

Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

OUTPUT
OUT
!OUT

Outputs the result (execution condition) of the logical processing to the spec-
ified bit.

Output
Required

OUTPUT NOT
OUT NOT

!OUT NOT

Reverses the result (execution condition) of the logical processing, and out-
puts it to the specified bit.

Output
Required

KEEP
KEEP
!KEEP

011

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S: Source word
N: Bit number

AND TSTN(351)

S

N

S: Source word
N: Bit number

TST(350)

S

N

S: Source word
N: Bit number

TSTN(351)

S

N

B: Bit

KEEP(011)

B

S (Set)

R (Reset)

Set

Reset

Operates as a latching relay.

S execution
condition

R execution
condition

Status of B
72

Sequence Output Instructions Section 3-2
DIFFERENTIATE
UP

DIFU
!DIFU

013

Output
Required

DIFFERENTIATE
DOWN

DIFD
!DIFD

014

Output
Required

SET
SET

@SET
%SET

!SET
!@SET
!%SET

Output
Required

RESET
RSET

@RSET
%RSET

!RSET
!@RSET
!%RSET

Output
Required

MULTIPLE BIT
SET

SETA
@SETA

530

Output
Required

MULTIPLE BIT
RESET

RSTA
@RSTA

531

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

B: Bit

DIFU(013)

B

Execution condition

Status of B

One cycle

DIFU(013) turns the designated bit ON for one cycle when the
execution condition goes from OFF to ON (rising edge).

B: Bit

DIFD(014)

B

Execution condition

Status of B
One cycle

DIFD(014) turns the designated bit ON for one cycle when the
execution condition goes from ON to OFF (falling edge).

B: Bit

SET
B Execution condition

of SET

Status of B

SET turns the operand bit ON when the execution condition is ON.

B: Bit

RSET
B Execution condition

of RSET

Status of B

RSET turns the operand bit OFF when the execution condition is ON.

D: Beginning
word
N1: Beginning bit
N2: Number of
bits

SETA(530)

D

N1

N2
N2 bits are set to 1
(ON).

SETA(530) turns ON the specified number of consecutive bits.

D: Beginning
word
N1: Beginning bit
N2: Number of
bits

RSTA(531)

D

N1

N2
N2 bits are reset to 0
(OFF).

RSTA(531) turns OFF the specified number of consecutive bits.
73

Sequence Output Instructions Section 3-2
SINGLE BIT SET
(CS1-H, CJ1-H,
or CJ1M only)

SETB
@SETB

!SETB
532

SETB(532) turns ON the specified bit in the specified word when the execu-
tion condition is ON.
Unlike the SET instruction, SETB(532) can be used to set a bit in a DM or EM
word.

Output
Required

SINGLE BIT
RESET
(CS1-H, CJ1-H,
or CJ1M only)

RSTB
@RSTB

!RSTB
533

RSTB(533) turns OFF the specified bit in the specified word when the execu-
tion condition is ON.
Unlike the RSET instruction, RSTB(533) can be used to reset a bit in a DM or
EM word.

Output
Required

SINGLE BIT
OUTPUT
(CS1-H, CJ1-H,
or CJ1M only)

OUTB
@OUTB

!OUTB
534

OUTB(534) outputs the result (execution condition) of the logical processing
to the specified bit.
Unlike the OUT instruction, OUTB(534) can be used to control a bit in a DM
or EM word.

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

D: Word address
N: Bit number

SETB(532)

D

N

D: Word address
N: Bit number

RSTB(533)

D

N

D: Word address
N: Bit number

OUTB(534)

D

N

74

Sequence Control Instructions Section 3-3
3-3 Sequence Control Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

END
END
001

Output
Not required

NO OPERATION
NOP
000

This instruction has no function. (No processing is performed for NOP(000).) Output
Not required

INTERLOCK
IL

002

Output
Required

END(001)

Task 1 Program A

To the next task number

Task 2 Program B

To the next task number

Task n Program Z

I/O refreshing

End of the main program

Indicates the end of a program.
END(001) completes the execution of a program for that cycle. No
instructions written after END(001) will be executed. Execution
proceeds to the program with the next task number. When the
program being executed has the highest task number in the program,
END(001) marks the end of the overall main program.

IL(002)

Execution
condition

Interlocked section
of the program

Execution
condition ON

Execution
condition OFF

Normal
execution

Outputs
interlocked.

Interlocks all outputs between IL(002) and ILC(003) when the
execution condition for IL(002) is OFF. IL(002) and ILC(003) are
normally used in pairs.
75

Sequence Control Instructions Section 3-3
INTERLOCK
CLEAR

ILC
003

Interlocks all outputs between IL(002) and ILC(003) when the execution condi-
tion for IL(002) is OFF. IL(002) and ILC(003) are normally used in pairs.

Output
Not required

JUMP
JMP
004

Output
Required

JUMP END
JME
005

Indicates the end of a jump initiated by JMP(004) or CJP(510). Output
Not required

CONDITIONAL
JUMP

CJP
510

Output
Required

CONDITIONAL
JUMP

CJPN
511

Output
Not required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

ILC(003)

N: Jump number

JMP(004)

N

Execution condition

Instructions
executed

Instructions
jumped

Instructions in this section
are not executed and out-
put status is maintained.
The instruction execution
time for these instructions
is eliminated.

When the execution condition for JMP(004) is OFF, program
execution jumps directly to the first JME(005) in the program with the
same jump number. JMP(004) and JME(005) are used in pairs.

N: Jump number

JME(005)

N

N: Jump number

CJP(510)

N

Execution
condition OFF

Instructions
executed

Instructions
jumped

Instructions in this section
are not executed and out-
put status is maintained.
The instruction execution
time for these instructions
is eliminated.

Execution
condition ON

The operation of CJP(510) is the basically the opposite of JMP(004).
When the execution condition for CJP(510) is ON, program execution
jumps directly to the first JME(005) in the program with the same jump
number. CJP(510) and JME(005) are used in pairs.

N: Jump number

CJPN(511)

N

Instructions
executed

Instructions
jumped

Instructions in this section
are not executed and out-
put status is maintained.
The instruction execution
time for these instructions
is eliminated.

Execution
condition ON

Execution
condition OFF

The operation of CJPN(511) is almost identical to JMP(004).
When the execution condition for CJP(004) is OFF, program execution
jumps directly to the first JME(005) in the program with the same jump
number. CJPN(511) and JME(005) are used in pairs.
76

Sequence Control Instructions Section 3-3
MULTIPLE JUMP
JMP0

515

Output
Required

MULTIPLE JUMP
END

JME0
516

When the execution condition for JMP0(515) is OFF, all instructions from
JMP0(515) to the next JME0(516) in the program are processed as NOP(000).
Use JMP0(515) and JME0(516) in pairs. There is no limit on the number of
pairs that can be used in the program.

Output
Not required

FOR-NEXT
LOOPS

FOR
512

Output
Not required

BREAK LOOP
BREAK

514

Output
Required

FOR-NEXT
LOOPS

NEXT
513

The instructions between FOR(512) and NEXT(513) are repeated a specified
number of times. FOR(512) and NEXT(513) are used in pairs.

Output
Not required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

JMP0(515)

Execution
condition a ON

Instructions
executed

Instructions
jumped

Jumped instructions
are processed as
NOP(000). Instruction
execution times are
the same as
NOP(000).

Execution
condition a OFF

Execution
condition b ON

Instructions
executed

Instructions
jumped

Execution
condition b OFF

When the execution condition for JMP0(515) is OFF, all instructions
from JMP0(515) to the next JME0(516) in the program are processed
as NOP(000). Use JMP0(515) and JME0(516) in pairs. There is no
limit on the number of pairs that can be used in the program.

JME0(516)

N: Number of
loops

FOR(512)

N

Repeated program section

Repeated N times

The instructions between FOR(512) and NEXT(513) are repeated a
specified number of times. FOR(512) and NEXT(513) are used in
pairs.

BREAK(514)

Repetitions
forced to end.

N repetitions
Condition a ON

Processed as
NOP(000).

Programmed in a FOR-NEXT loop to cancel the execution of the loop
for a given execution condition. The remaining instructions in the loop
are processed as NOP(000) instructions.

NEXT(513)
77

Timer and Counter Instructions Section 3-4
3-4 Timer and Counter Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

TIMER
TIM(BCD)

Output
Required

TIMX
(Binary)

(CS1-H, CJ1-H, or
CJ1M only)

HIGH-SPEED
TIMER

TIMH
015

(BCD)

Output
Required

TIMHX
551

(Binary)
(CS1-H, CJ1-H, or

CJ1M only)

ONE-MS TIMER
TMHH

540
(BCD)

TMHH(540) operates a decrementing timer with units of 1-ms. The setting
range for the set value (SV) is 0 to 9.999 s.

The timing charts for TMHH(540) are the same as those given above for
TIMH(015).

Output
Required

TMHHX
552

(BCD)
(CS1-H, CJ1-H, or

CJ1M only)

N: Timer number
S: Set value

TIM

N

S
Timer input

Timer PV
SV

Completion
Flag

Timer input

Timer PV
SV

Completion
Flag

TIM operates a decrementing timer with units of 0.1-s. The setting
range for the set value (SV) is 0 to 999.9 s.

Timer input turns OFF before Completion Flag turns ON.

N: Timer number
S: Set value

TIMX(550)

N

S

N: Timer number
S: Set value

TIMH(015)

N
S Timer input

Timer PV SV

Completion
Flag

Timer input

Timer PV SV

Completion
Flag

TIMH(015) operates a decrementing timer with units of 10-ms. The
setting range for the set value (SV) is 0 to 99.99 s.

Timer input turns OFF before Completion Flag turns ON.

N: Timer number
S: Set value

TIMHX(551)

N

S

N: Timer number
S: Set value

TMHH(540)

N

S

N: Timer number
S: Set value

TMHHX(552)

N

S

78

Timer and Counter Instructions Section 3-4
ACCUMULATIVE
TIMER

TTIM
087

(BCD)

Output
Required

TTIMX
555

(Binary)
(CS1-H, CJ1-H, or

CJ1M only)

LONG TIMER
TIML

542
(BCD)

Output
Required

TIMLX
553

(Binary)
(CS1-H, CJ1-H, or

CJ1M only)

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

N: Timer number
S: Set value

TTIM(087)

N
S

Timer
input

Reset
input

Timer input

Timer PV SV

Completion
Flag

Reset input

PV maintained.

Timing resumes.

TTIM(087) operates an incrementing timer with units of 0.1-s. The
setting range for the set value (SV) is 0 to 999.9 s.

N: Timer number
S: Set value

TTIMX(555)

N

S

Timer
input

Reset
input

D1: Completion
Flag
D2: PV word
S: SV word

TIML(542)

D1

D2

S

Timer input

Timer PV
SV

Completion Flag
(Bit 00 of D1)

TIML(542) operates a decrementing timer with units of 0.1-s that can
time up to 9999999.9 S (approx. 115 days).

D1: Completion
Flag
D2: PV word
S: SV word

TIMLX(553)

D1

D2

S

79

Timer and Counter Instructions Section 3-4
MULTI-OUTPUT
TIMER

MTIM
543

(BCD)

Output
Required

MTIMX
554

(Binary)
(CS1-H, CJ1-H, or

CJ1M only)

COUNTER
CNT

(BCD)

Output
Required

CNTX
546

(Binary)
(CS1-H, CJ1-H, or

CJ1M only)

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

D1: Completion
Flags
D2: PV word
S: 1st SV word

MTIM(543)

D1

D2

S

0

toto

Timer input

Timer PV (D2)

SV 7
to

Completion
flags (D1)

Bit 7
to

Timer PV

Timer SVs

SV 2
SV 1
SV 0

0

Bit 2

Bit 1

Bit 0

MTIM(543) operates a 0.1-s incrementing timer with eight
independent SVs and Completion Flags. The setting range for the set
value (SV) is 0 to 999.9 s.

D1 bits

D1: Completion
Flags
D2: PV word
S: 1st SV word

MTIMX(554)

D1

D2

S

N: Counter
number
S: Set value

CNT

N
S

Count
input

Reset
input

Count input

Counter PV SV

Completion
Flag

Reset input

CNT operates a decrementing counter. The setting range for the set
value (SV) is 0 to 9,999.

N: Counter
number
S: Set value

CNTX(546)

N

S

Count
input

Reset
input
80

Timer and Counter Instructions Section 3-4
REVERSIBLE
COUNTER

CNTR
012

(BCD)

Output
Required

CNTRX
548

(Binary)
(CS1-H, CJ1-H, or

CJ1M only)

RESET TIMER/
COUNTER

CNR
@CNR

545
(BCD)

Resets the timers or counters within the specified range of timer or counter
numbers. Sets the set value (SV) to the maximum of 9999.

Output
Required

CNRX
@CNRX

547
(Binary)

(CS1-H, CJ1-H, or
CJ1M only)

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

N: Counter
number
S: Set value

CNTR(012)

N
S

Incre-
ment
input

Reset
input

Decre-
ment
input

Increment input

Counter PV

Decrement input

SV
Counter PV

Completion Flag

+1

SV
Counter PV

Completion Flag

–1

CNTR(012) operates a reversible counter.

N: Counter
number
S: Set value

CNTRX(548)

N

S

Incre-
ment
input

Reset
input

Decre-
ment
input

N1: 1st number in
range
N2: Last number
in range

CNR(545)

N1

N2

N1: 1st number in
range
N2: Last number
in range

CNRX(547)

N1

N2
81

Comparison Instructions Section 3-5
3-5 Comparison Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Symbol Compari-
son (Unsigned)
LD, AND, OR + =,

<>, <, <=, >, >=
300 (=)

305 (<>)
310 (<)

315 (<=)
320 (>)

325(>=)

LD: Not
required
AND, OR:
Required

Symbol Compari-
son (Double-
word, unsigned)
LD, AND, OR + =,
<>, <, <=, >, >= +

L
301 (=)

306 (<>)
311 (<)

316 (<=)
321 (>)

326 (>=)

S1: Comparison
data 1
S2: Comparison
data 2

Symbol comparison instructions (double-word, unsigned) compare two values
(constants and/or the contents of specified double-word data) in unsigned 32-bit
binary data and create an ON execution condition when the comparison condi-
tion is true. There are three types of symbol comparison instructions, LD
(LOAD), AND, and OR.

LD: Not
required
AND, OR:
Required

Symbol Compari-
son (Signed)
LD, AND, OR + =,

<>, <, <=, >, >=
+S

302 (=)
307 (<>)

312 (<)
317 (<=)

322 (>)
327 (>=)

S1: Comparison
data 1
S2: Comparison
data 2

Symbol comparison instructions (signed) compare two values (constants and/or
the contents of specified words) in signed 16-bit binary (4-digit hexadecimal)
and create an ON execution condition when the comparison condition is true.
There are three types of symbol comparison instructions, LD (LOAD), AND, and
OR.

LD: Not
required
AND, OR:
Required

S1: Comparison
data 1
S2: Comparison
data 2

Symbol & options

S1

S2

LD

AND

OR

ON execution condition when
comparison result is true.

ON execution condition
when comparison result
is true.

ON execution condition when
comparison result is true.

<

<

<

Symbol comparison instructions (unsigned) compare two values
(constants and/or the contents of specified words) in 16-bit binary
data and create an ON execution condition when the comparison
condition is true. There are three types of symbol comparison
instructions, LD (LOAD), AND, and OR.
82

Comparison Instructions Section 3-5
Symbol Compari-
son (Double-
word, signed)
LD, AND, OR + =,

<>, <, <=, >, >=
+SL

303 (=)
308 (<>)

313 (<)
318 (<=)

323 (>)
328 (>=)

S1: Comparison
data 1
S2: Comparison
data 2

Symbol comparison instructions (double-word, signed) compare two values
(constants and/or the contents of specified double-word data) in signed 32-bit
binary (8-digit hexadecimal) and create an ON execution condition when the
comparison condition is true. There are three types of symbol comparison
instructions, LD (LOAD), AND, and OR.

LD: Not
required
AND, OR:
Required

UNSIGNED COM-
PARE

CMP
!CMP

020

Output
Required

DOUBLE
UNSIGNED COM-
PARE

CMPL
060

Output
Required

SIGNED BINARY
COMPARE

CPS
!CPS

114

Output
Required

DOUBLE
SIGNED BINARY
COMPARE

CPSL
115

Output
Required

MULTIPLE
COMPARE

MCMP
@MCMP

019

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S1: Comparison
data 1
S2: Comparison
data 2

CMP(020)

S1

S2 Unsigned binary
comparison

Arithmetic Flags
(>, >=, =, <=, <, <>)

Compares two unsigned binary values (constants and/or the contents
of specified words) and outputs the result to the Arithmetic Flags in
the Auxiliary Area.

S1: Comparison
data 1
S2: Comparison
data 2

CMPL(060)

S1

S2
Unsigned binary
comparison

Arithmetic Flags
(>, >=, =, <=, <, <>)

S1+1 S2+1

Compares two double unsigned binary values (constants and/or the
contents of specified words) and outputs the result to the Arithmetic
Flags in the Auxiliary Area.

S1: Comparison
data 1
S2: Comparison
data 2

CPS(114)

S1

S2
Signed binary
comparison

Arithmetic Flags
(>, >=, =, <=, <, <>)

Compares two signed binary values (constants and/or the contents of
specified words) and outputs the result to the Arithmetic Flags in the
Auxiliary Area.

S1: Comparison
data 1
S2: Comparison
data 2

CPSL(115)

S1

S2
Signed binary
comparison

Arithmetic Flags
(>, >=, =, <=, <, <>)

S1+1 S2+1

Compares two double signed binary values (constants and/or the
contents of specified words) and outputs the result to the Arithmetic
Flags in the Auxiliary Area.

S1: 1st word of
set 1
S2: 1st word of
set 2
R: Result word

MCMP(019)

S1

S2

R

Compares 16 consecutive words with another 16 consecutive words
and turns ON the corresponding bit in the result word where the
contents of the words are not equal.

Comparison

0: Words
are equal.
1: Words
aren't
equal.

R

83

Comparison Instructions Section 3-5
TABLE
COMPARE

TCMP
@TCMP

085

Output
Required

UNSIGNED
BLOCK
COMPARE

BCMP
@BCMP

068

Output
Required

EXPANDED
BLOCK COM-
PARE

BCMP2
@BCMP2

502
(CJ1M only)

Compares the source data to up to 256 ranges (defined by upper and lower limits)
and turns ON the corresponding bit in the result word when the source data is
within a range.

Output
Required12
7

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S: Source data
T: 1st word of
table
R: Result word

TCMP(085)

S

T

R

Comparison
1: Data are
equal.
0: Data aren't
equal.

R

Compares the source data to the contents of 16 consecutive words
and turns ON the corresponding bit in the result word when the
contents of the words are equal.

S: Source data
T: 1st word of
table
R: Result word

BCMP(068)

S

T

R

Compares the source data to 16 ranges (defined by 16 lower limits
and 16 upper limits) and turns ON the corresponding bit in the result
word when the source data is within the range.

to T+3 1

0

14

15

to T+29

to T+31

to T+1

T+2

T+28
T+30

T

S

Ranges 1: In range
0: Not in range

RLower limit Upper limit

Source data

S: Source data
T: 1st word of
block
R: Result word

BCMP2(502)

S

T

R
T+1

T+3

T+2N+1

S

T

T+2

T+4

T+2N+2

0

1

D

D+15 max.

Bit

1: In range
0: Not in range

Source data

Range 0 A

Range 1 A

Range N A

N n=255 max.

Range 0 B

Range 1 B

Range N B

Note: A can be less than
or equal to B or
greater the B.
84

Comparison Instructions Section 3-5
AREA RANGE
COMPARE
(CS1-H, CJ1-H,
or CJ1M only)

ZCP
@ZCP

088

Compares the 16-bit unsigned binary value in CD (word contents or constant) to
the range defined by LL and UL and outputs the results to the Arithmetic Flags in
the Auxiliary Area.

Output
Required

DOUBLE AREA
RANGE COM-
PARE
(CS1-H, CJ1-H,
or CJ1M only)

ZCPL
@ZCPL

116

Compares the 32-bit unsigned binary value in CD and CD+1 (word contents or
constant) to the range defined by LL and UL and outputs the results to the Arith-
metic Flags in the Auxiliary Area.

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

CD: Compare
data (1 word)
LL: Lower limit of
range
UL: Upper limit of
range

ZCP(088)

CD

LL

UL

CD: Compare
data (2 words)
LL: Lower limit of
range
UL: Upper limit of
range

ZCPL(116)

CD

LL

UL
85

Data Movement Instructions Section 3-6
3-6 Data Movement Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

MOVE
MOV

@MOV
!MOV

!@MOV
021

Output
Required

DOUBLE MOVE
MOVL

@MOVL
498

Output
Required

MOVE NOT
MVN

@MVN
022

Output
Required

DOUBLE MOVE
NOT

MVNL
@MVNL

499

Output
Required

MOVE BIT
MOVB

@MOVB
082

Output
Required

S: Source
D: Destination

MOV(021)

S

D

Transfers a word of data to the specified word.

Source word

Destination word

Bit status
not changed.

S: 1st source
word
D: 1st destination
word

MOVL(498)

S

D

Transfers two words of data to the specified words.
S

D

Bit status
not changed.

S+1

D+1

S: Source
D: Destination

MVN(022)

S

D

Transfers the complement of a word of data to the specified word.

Source word

Destination word

Bit status
inverted.

S: 1st source
word
D: 1st destination
word

MVNL(499)

S

D

Transfers the complement of two words of data to the specified words.
S

D

S+1

D+1

Bit status
inverted.

S: Source word or
data
C: Control word
D: Destination
word

MOVB(082)

S

C

D

Transfers the specified bit.
86

Data Movement Instructions Section 3-6
MOVE DIGIT
MOVD

@MOVD
083

Output
Required

MULTIPLE BIT
TRANSFER

XFRB
@XFRB

062

Output
Required

BLOCK
TRANSFER

XFER
@XFER

070

Output
Required

BLOCK SET
BSET

@BSET
071

Output
Required

DATA
EXCHANGE

XCHG
@XCHG

073

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S: Source word or
data
C: Control word
D: Destination
word

MOVD(083)

S

C

D

Transfers the specified digit or digits. (Each digit is made up of 4 bits.)

C: Control word
S: 1st source
word
D: 1st destination
word

XFRB(062)

C

S

D

Transfers the specified number of consecutive bits.

N: Number of
words
S: 1st source
word
D: 1st destination
word

XFER(070)

N

S

D
S+(N–1) D+(N–1)

to to
N words

Transfers the specified number of consecutive words.

S: Source word
St: Starting word
E: End word

BSET(071)

S

St

E

Source word Destination words

St

E

Copies the same word to a range of consecutive words.

E1: 1st exchange
word
E2: Second
exchange word

XCHG(073)

E1

E2

Exchanges the contents of the two specified words.

E2E1
87

Data Movement Instructions Section 3-6
DOUBLE DATA
EXCHANGE

XCGL
@XCGL

562

Output
Required

SINGLE WORD
DISTRIBUTE

DIST
@DIST

080

Output
Required

DATA COLLECT
COLL

@COLL
081

Output
Required

MOVE TO
REGISTER

MOVR
@MOVR

560

Output
Required

MOVE TIMER/
COUNTER PV TO
REGISTER

MOVRW
@MOVRW

561

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

E1: 1st exchange
word
E2: Second
exchange word

XCGL(562)

E1

E2

Exchanges the contents of a pair of consecutive words with another
pair of consecutive words.

E2E1 E1+1 E2+1

S: Source word
Bs: Destination
base address
Of: Offset

DIST(080)

S

Bs

Of

Transfers the source word to a destination word calculated by adding
an offset value to the base address.

S Bs

Bs+n

Of

Bs: Source base
address
Of: Offset
D: Destination
word

COLL(081)

Bs

Of

D

Transfers the source word (calculated by adding an offset value to the
base address) to the destination word.

Bs

Bs+n

Of

S: Source
(desired word or
bit)
D: Destination
(Index Register)

MOVR(560)

S

D

Sets the PC memory address of the specified word, bit, or
timer/counter Completion Flag in the specified Index Register. (Use
MOVRW(561) to set the PC memory address of a timer/counter PV in
an Index Register.)

I/O memory address of S

Index Register

S: Source
(desired TC
number)
D: Destination
(Index Register)

MOVRW(561)

S

D

Sets the PC memory address of the specified timer or counter's PV in
the specified Index Register. (Use MOVR(560) to set the PC memory
address of a word, bit, or timer/counter Completion Flag in an Index
Register.)

I/O memory address of S

Index Register

Timer/counter PV only
88

Data Shift Instructions Section 3-7
3-7 Data Shift Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

SHIFT REGISTER
SFT
010

Output
Required

REVERSIBLE
SHIFT REGISTER

SFTR
@SFTR

084

Output
Required

ASYNCHRO-
NOUS SHIFT
REGISTER

ASFT
@ASFT

017

Output
Required

WORD SHIFT
WSFT

@WSFT
016

Output
Required

ARITHMETIC
SHIFT LEFT

ASL
@ASL

025

Output
Required

St: Starting word
E: End word

SFT(010)

St

E

Data
input
Shift
input
Reset
input

Operates a shift register.

Status of data
input for each
shift input

Lost

E St+1, St+2 St

C: Control word
St: Starting word
E: End word

SFTR(084)

C

St

E

Data
input

Shift
direc-
tion

Data inputStE

StE

Creates a shift register that shifts data to either the right or the left.

C: Control word
St: Starting word
E: End word

ASFT(017)

C

St

E St

E

St

E

Shift direction

Shift enabled

Clear

Shift

Shift

Non-zero data

Zero data

Shifts all non-zero word data within the specified word range either
towards St or toward E, replacing 0000Hex word data.

S: Source word
St: Starting word
E: End word

WSFT(016)

S

St

E

Lost

StE

Shifts data between St and E in word units.

Wd: Word

ASL(025)

Wd

Shifts the contents of Wd one bit to the left.

015
89

Data Shift Instructions Section 3-7
DOUBLE SHIFT
LEFT

ASLL
@ASLL

570

Output
Required

ARITHMETIC
SHIFT RIGHT

ASR
@ASR

026

Output
Required

DOUBLE SHIFT
RIGHT

ASRL
@ASRL

571

Output
Required

ROTATE LEFT
ROL

@ROL
027

Output
Required

DOUBLE
ROTATE LEFT

ROLL
@ROLL

572

Output
Required

ROTATE LEFT
WITHOUT
CARRY

RLNC
@RLNC

574

Output
Required

DOUBLE
ROTATE LEFT
WITHOUT
CARRY

RLNL
@RLNL

576

Output
Required

ROTATE RIGHT
ROR

@ROR
028

Output
Required

DOUBLE
ROTATE RIGHT

RORL
@RORL

573

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Wd: Word

ASLL(570)

Wd WdWd+1

Shifts the contents of Wd and Wd +1 one bit to the left.

Wd: Word

ASR(026)

Wd

Shifts the contents of Wd one bit to the right.

Wd: Word

ASRL(571)

Wd WdWd+1

Shifts the contents of Wd and Wd +1 one bit to the right.

Wd: Word

ROL(027)

Wd

Shifts all Wd bits one bit to the left including the Carry Flag (CY).

Wd: Word

ROLL(572)

Wd Wd+1 Wd

Shifts all Wd and Wd +1 bits one bit to the left including the Carry Flag
(CY).

Wd: Word

RLNC(574)

Wd Wd

Shifts all Wd bits one bit to the left not including the Carry Flag (CY).

Wd: Word

RLNL(576)

Wd Wd+1 Wd

Shifts all Wd and Wd +1 bits one bit to the left not including the Carry
Flag (CY).

Wd: Word

ROR(028)

Wd
WdWd+1

Shifts all Wd bits one bit to the right including the Carry Flag (CY).

Wd: Word

RORL(573)

Wd WdWd+1

Shifts all Wd and Wd +1 bits one bit to the right including the Carry
Flag (CY).
90

Data Shift Instructions Section 3-7
ROTATE RIGHT
WITHOUT
CARRY

RRNC
@RRNC

575

Output
Required

DOUBLE
ROTATE RIGHT
WITHOUT
CARRY

RRNL
@RRNL

577

Output
Required

ONE DIGIT SHIFT
LEFT

SLD
@SLD

074

Output
Required

ONE DIGIT SHIFT
RIGHT

SRD
@SRD

075

Output
Required

SHIFT N-BIT
DATA LEFT

NSFL
@NSFL

578

Output
Required

SHIFT N-BIT
DATA RIGHT

NSFR
@NSFR

579

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Wd: Word

RRNC(575)

Wd

Wd

Shifts all Wd bits one bit to the right not including the Carry Flag (CY).
The contents of the rightmost bit of Wd shifts to the leftmost bit and to
the Carry Flag (CY).

Wd: Word

RRNL(577)

Wd

Wd+1 Wd

Shifts all Wd and Wd +1 bits one bit to the right not including the Carry
Flag (CY). The contents of the rightmost bit of Wd +1 is shifted to the
leftmost bit of Wd, and to the Carry Flag (CY).

St: Starting word
E: End word

SLD(074)

St

E Lost

E St
Shifts data by one digit (4 bits) to the left.

St: Starting word
E: End word

SRD(075)

St

E
Lost

E St
Shifts data by one digit (4 bits) to the right.

D: Beginning
word for shift
C: Beginning bit
N: Shift data
length

NSFL(578)

D

C

N

N–1 bit Shifts one bit to the left

N–1 bit

Shifts the specified number of bits to the left.

D: Beginning
word for shift
C: Beginning bit
N: Shift data
length

NSFR(579)

D

C

N

N–1 bit
Shifts one bit to the right

N–1 bit

Shifts the specified number of bits to the right.
91

Data Shift Instructions Section 3-7
SHIFT N-BITS
LEFT

NASL
@NASL

580

Output
Required

DOUBLE SHIFT
N-BITS LEFT

NSLL
@NSLL

582

Output
Required

SHIFT N-BITS
RIGHT

NASR
@NASR

581

Output
Required

DOUBLE SHIFT
N-BITS RIGHT

NSRL
@NSRL

583

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

D: Shift word
C: Control word

NASL(580)

D

C

Shift n–bits

Lost

N bits

Contents of "a" or "0"
shifted in

Shifts the specified 16 bits of word data to the left by the specified
number of bits.

D: Shift word
C: Control word

NSLL(582)

D

C

Shift n–bits

Lost

N bits

Contents of
"a" or "0"
shifted in

Shifts the specified 32 bits of word data to the left by the specified
number of bits.

D: Shift word
C: Control word

NASR(581)

D

C

Lost

N bits

Contents of "a" or
"0" shifted in

Shifts the specified 16 bits of word data to the right by the specified
number of bits.

D: Shift word
C: Control word

NSRL(583)

D

C Shift n–bits

Lost

Contents of
"a" or "0"
shifted in

Shifts the specified 32 bits of word data to the right by the specified
number of bits.
92

Increment/Decrement Instructions Section 3-8
3-8 Increment/Decrement Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

INCREMENT
BINARY

++
@++
590

Output
Required

DOUBLE INCRE-
MENT BINARY

++L
@++L

591

Output
Required

DECREMENT
BINARY

– –
@– –

592

Output
Required

DOUBLE DEC-
REMENT
BINARY

– –L
@– –L

593

Output
Required

INCREMENT
BCD

++B
@++B

594

Output
Required

DOUBLE INCRE-
MENT BCD

++BL
@++BL

595

Output
Required

DECREMENT
BCD

– –B
@– –B

596

Output
Required

DOUBLE DEC-
REMENT BCD

– –BL
@– –BL

597

Output
Required

Wd: Word

++(590)

Wd
Wd Wd

Increments the 4-digit hexadecimal content of the specified word by 1.

Wd: Word

++L(591)

Wd Wd+1 Wd Wd+1 Wd

Increments the 8-digit hexadecimal content of the specified words by 1.

Wd: Word

– –(592)

Wd Wd Wd

Decrements the 4-digit hexadecimal content of the specified word by 1.

Wd: 1st word

– –L(593)

Wd
Wd+1 Wd Wd+1 Wd

Decrements the 8-digit hexadecimal content of the specified words by 1.

Wd: Word

++B(594)

Wd Wd Wd

Increments the 4-digit BCD content of the specified word by 1.

Wd: 1st word

++BL(595)

Wd
Wd+1 Wd Wd+1 Wd

Increments the 8-digit BCD content of the specified words by 1.

Wd: Word

– –B(596)

Wd
–1Wd Wd

Decrements the 4-digit BCD content of the specified word by 1.

Wd: 1st word

– –BL(597)

Wd
Wd+1 Wd Wd+1 Wd

Decrements the 8-digit BCD content of the specified words by 1.
93

Symbol Math Instructions Section 3-9
3-9 Symbol Math Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

SIGNED BINARY
ADD WITHOUT
CARRY

+
@+
400

Output
Required

DOUBLE
SIGNED BINARY
ADD WITHOUT
CARRY

+L
@+L
401

Output
Required

SIGNED BINARY
ADD WITH
CARRY

+C
@+C

402

Output
Required

DOUBLE
SIGNED BINARY
ADD WITH
CARRY

+CL
@+CL

403

Output
Required

BCD ADD
WITHOUT
CARRY

+B
@+B

404

Output
Required

Au: Augend word
Ad: Addend word
R: Result word

+(400)

Au

Ad

R

Adds 4-digit (single-word) hexadecimal data and/or constants.

Au

Ad

RCY

+

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a carry.

Au: 1st augend
word
Ad: 1st addend
word
R: 1st result word

+L(401)

Au

Ad

R

Adds 8-digit (double-word) hexadecimal data and/or constants.

Au+1

Ad+1

R+1CY

+

Au

Ad

R

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when
there is a
carry.

Au: Augend word
Ad: Addend word
R: Result word

+C(402)

Au

Ad

R

Adds 4-digit (single-word) hexadecimal data and/or constants with the
Carry Flag (CY).

CY+

Au

Ad

RCY

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a carry.

Au: 1st augend
word
Ad: 1st addend
word
R: 1st result word

+CL(403)

Au

Ad

R

Adds 8-digit (double-word) hexadecimal data and/or constants with the
Carry Flag (CY).

Au+1

Ad+1

R+1

CY+

Au

Ad

RCY

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a carry.

Au: Augend word
Ad: Addend word
R: Result word

+B(404)

Au

Ad

R

Adds 4-digit (single-word) BCD data and/or constants.

Au

Ad

RCY

+

(BCD)

(BCD)

(BCD)
CY will turn
ON when there
is a carry.
94

Symbol Math Instructions Section 3-9
DOUBLE BCD
ADD WITHOUT
CARRY

+BL
@+BL

405

Output
Required

BCD ADD WITH
CARRY

+BC
@+BC

406

Output
Required

DOUBLE BCD
ADD WITH
CARRY

+BCL
@+BCL

407

Output
Required

SIGNED BINARY
SUBTRACT
WITHOUT
CARRY

–
@–
410

Output
Required

DOUBLE
SIGNED BINARY
SUBTRACT
WITHOUT
CARRY

–L
@–L
411

Output
Required

SIGNED BINARY
SUBTRACT
WITH CARRY

–C
@–C

412

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Au: 1st augend word
Ad: 1st addend word
R: 1st result word

+BL(405)

Au

Ad

R

Adds 8-digit (double-word) BCD data and/or constants.

Au +1

Ad+1

R+1CY

+

Au

Ad

R

(BCD)

(BCD)

(BCD)CY will turn
ON when there
is a carry.

Au: Augend word
Ad: Addend word
R: Result word

+BC(406)

Au

Ad

R

Adds 4-digit (single-word) BCD data and/or constants with the Carry Flag
(CY).

CY+

Au

Ad

RCY

(BCD)

(BCD)

(BCD)
CY will turn
ON when there
is a carry.

Au: 1st augend word
Ad: 1st addend word
R: 1st result word

+BCL(407)

Au

Ad

R

Adds 8-digit (double-word) BCD data and/or constants with the Carry Flag
(CY).

Au +1

Ad+1

R+1

CY+

Au

Ad

RCY

(BCD)

(BCD)

(BCD)

CY will turn
ON when there
is a carry.

Mi: Minuend word
Su: Subtrahend
word
R: Result word

–(410)

Mi

Su

R

Subtracts 4-digit (single-word) hexadecimal data and/or constants.

Mi

Su

RCY

–

(Signed binary)

(Signed binary)

(Signed binary)CY will turn ON
when there is a
borrow.

Mi: Minuend word
Su: Subtrahend
word
R: Result word

–L(411)

Mi

Su

R

Subtracts 8-digit (double-word) hexadecimal data and/or constants.

Mi+1

Su+1

R+1CY

–

Mi

Su

R

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when
there is a
borrow.

Mi: Minuend word
Su: Subtrahend
word
R: Result word

–C(412)

Mi

Su

R

Subtracts 4-digit (single-word) hexadecimal data and/or constants with the
Carry Flag (CY).

CY–

Mi

Su

RCY

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a borrow.
95

Symbol Math Instructions Section 3-9
DOUBLE
SIGNED BINARY
WITH CARRY

–CL
@–CL

413

Output
Required

BCD SUBTRACT
WITHOUT
CARRY

–B
@–B

414

Output
Required

DOUBLE BCD
SUBTRACT
WITHOUT
CARRY

–BL
@–BL

415

Output
Required

BCD SUBTRACT
WITH CARRY

–BC
@–BC

416

Output
Required

DOUBLE BCD
SUBTRACT
WITH CARRY

–BCL
@–BCL

417

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Mi: Minuend word
Su: Subtrahend
word
R: Result word

–CL(413)

Mi

Su

R

Subtracts 8-digit (double-word) hexadecimal data and/or constants with
the Carry Flag (CY).

Mi+1

Su+1

R+1

CY–

Mi

Su

RCY

(Signed binary)

(Signed binary)

(Signed binary)

CY will turn
ON when
there is a
borrow.

Mi: Minuend word
Su: Subtrahend
word
R: Result word

–B(414)

Mi

Su

R

Subtracts 4-digit (single-word) BCD data and/or constants.

Mi

Su

RCY

–

(BCD)

(BCD)

(BCD)
CY will turn
ON when there
is a carry.

Mi: 1st minuend
word
Su: 1st
subtrahend word
R: 1st result word

–BL(415)

Mi

Su

R

Subtracts 8-digit (double-word) BCD data and/or constants.

Mi +1

Su+1

R+1CY

–

Mi

Su

R

(BCD)

(BCD)

(BCD)CY will turn
ON when there
is a borrow.

Mi: Minuend word
Su: Subtrahend
word
R: Result word

–BC(416)

Mi

Su

R

Subtracts 4-digit (single-word) BCD data and/or constants with the Carry
Flag (CY).

CY

Mi

Su

RCY

(BCD)

(BCD)

(BCD)CY will turn
ON when there
is a borrow.

–

Mi: 1st minuend
word
Su: 1st
subtrahend word
R: 1st result word

–BCL(417)

Mi

Su

R

Subtracts 8-digit (double-word) BCD data and/or constants with the Carry
Flag (CY).

Mi +1

Su+1

R+1

CY

Mi

Su

RCY

(BCD)

(BCD)

(BCD)CY will turn
ON when there
is a borrow.

–

96

Symbol Math Instructions Section 3-9
SIGNED BINARY
MULTIPLY

*
@*
420

Output
Required

DOUBLE
SIGNED BINARY
MULTIPLY

*L
@*L
421

Output
Required

UNSIGNED
BINARY
MULTIPLY

*U
@*U

422

Output
Required

DOUBLE
UNSIGNED
BINARY
MULTIPLY

*UL
@*UL

423

Output
Required

BCD MULTIPLY
*B

@*B
424

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Md: Multiplicand
word
Mr: Multiplier
word
R: Result word

*(420)

Md

Mr

R

Multiplies 4-digit signed hexadecimal data and/or constants.

Md

Mr

R +1

×

(Signed binary)

(Signed binary)

(Signed binary)R

Md: 1st
multiplicand word
Mr: 1st multiplier
word
R: 1st result word

*L(421)

Md

Mr

R

Multiplies 8-digit signed hexadecimal data and/or constants.

Md + 1 Md

Mr + 1 Mr

R + 1 RR + 3 R + 2

(Signed binary)

(Signed binary)

(Signed binary)

×

Md: Multiplicand
word
Mr: Multiplier
word
R: Result word

*U(422)

Md

Mr

R

Multiplies 4-digit unsigned hexadecimal data and/or constants.

Md

Mr

R +1

×

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)R

Md: 1st
multiplicand word
Mr: 1st multiplier
word
R: 1st result word

*UL(423)

Md

Mr

R

Multiplies 8-digit unsigned hexadecimal data and/or constants.

Md + 1 Md

Mr + 1 Mr

R + 1 RR + 3 R + 2

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

×

Md: Multiplicand
word
Mr: Multiplier
word
R: Result word

*B(424)

Md

Mr

R

Multiplies 4-digit (single-word) BCD data and/or constants.

Md

Mr

R +1

×

(BCD)

(BCD)

(BCD)R
97

Symbol Math Instructions Section 3-9
DOUBLE BCD
MULTIPLY

*BL
@*BL

425

Output
Required

SIGNED BINARY
DIVIDE

/
@/

430

Output
Required

DOUBLE
SIGNED BINARY
DIVIDE

/L
@/L
431

Output
Required

UNSIGNED
BINARY DIVIDE

/U
@/U
432

Output
Required

DOUBLE
UNSIGNED
BINARY DIVIDE

/UL
@/UL

433

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Md: 1st
multiplicand word
Mr: 1st multiplier
word
R: 1st result word

*BL(425)

Md

Mr

R

Multiplies 8-digit (double-word) BCD data and/or constants.

Md + 1 Md

Mr + 1 Mr

R + 1 RR + 3 R + 2

(BCD)

(BCD)

(BCD)

×

Dd: Dividend
word
Dr: Divisor word
R: Result word

/(430)

Dd

Dr

R

Divides 4-digit (single-word) signed hexadecimal data and/or constants.

Dd

Dr

R +1

÷

(Signed binary)

(Signed binary)

(Signed binary)

Remainder Quotient

R

Dd: 1st dividend
word
Dr: 1st divisor
word
R: 1st result word

/L(431)

Dd

Dr

R

Divides 8-digit (double-word) signed hexadecimal data and/or constants.

Dd + 1 Dd

Dr + 1 Dr

R + 1 RR + 3 R + 2

(Signed binary)

(Signed binary)

(Signed binary)

÷

Remainder Quotient

Dd: Dividend
word
Dr: Divisor word
R: Result word

/U(432)

Dd

Dr

R

Divides 4-digit (single-word) unsigned hexadecimal data and/or constants.

Dd

Dr

R +1 R

÷

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

Remainder Quotient

Dd: 1st dividend
word
Dr: 1st divisor
word
R: 1st result word

/UL(433)

Dd

Dr

R

Divides 8-digit (double-word) unsigned hexadecimal data and/or
constants.

Dd + 1 Dd

Dr + 1 Dr

R + 1 RR + 3 R + 2

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

÷

Remainder Quotient
98

Conversion Instructions Section 3-10
3-10 Conversion Instructions

BCD DIVIDE
/B

@/B
434

Output
Required

DOUBLE BCD
DIVIDE

/BL
@/BL

435

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

BCD-TO-BINARY
BIN

@BIN
023

Output
Required

DOUBLE BCD-
TO-DOUBLE
BINARY

BINL
@BINL

058

Output
Required

BINARY-TO-BCD
BCD

@BCD
024

Output
Required

DOUBLE
BINARY-TO-
DOUBLE BCD

BCDL
@BCDL

059

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Dd: Dividend
word
Dr: Divisor word
R: Result word

/B(434)

Dd

Dr

R

Divides 4-digit (single-word) BCD data and/or constants.

Dd

Dr

R +1 R

÷

(BCD)

(BCD)

(BCD)

Remainder Quotient

Dd: 1st dividend
word
Dr: 1st divisor
word
R: 1st result word

/BL(435)

Dd

Dr

R

Divides 8-digit (double-word) BCD data and/or constants.

Dd + 1 Dd

Dr + 1 Dr

R + 1 RR + 3 R + 2

(BCD)

(BCD)

(BCD)

÷

Remainder Quotient

S: Source word
R: Result word

BIN(023)
S

R

(BCD) (BIN)

Converts BCD data to binary data.

R

S: 1st source
word
R: 1st result word

BINL(058)

S

R
(BCD) (BIN)

(BCD) (BIN)
R

R+1

Converts 8-digit BCD data to 8-digit hexadecimal (32-bit binary) data.

S: Source word
R: Result word

BCD(024)

S

R

(BCD)(BIN) R

Converts a word of binary data to a word of BCD data.

S: 1st source
word
R: 1st result word

BCDL(059)

S

R
(BIN) (BCD)

(BIN) (BCD)
R

R+1

Converts 8-digit hexadecimal (32-bit binary) data to 8-digit BCD data.
99

Conversion Instructions Section 3-10
2’S COMPLE-
MENT

NEG
@NEG

160

Output
Required

DOUBLE 2’S
COMPLEMENT

NEGL
@NEGL

161

Output
Required

16-BIT TO 32-BIT
SIGNED BINARY

SIGN
@SIGN

600

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S: Source word
R: Result word

NEG(160)

S

R

Calculates the 2's complement of a word of hexadecimal data.

2's complement
(Complement + 1)

(R)(S)

S: 1st source
word
R: 1st result word

NEGL(161)

S

R

Calculates the 2's complement of two words of hexadecimal data.

2's complement
(Complement + 1)

(S+1, S) (R+1, R)

S: Source word
R: 1st result word

SIGN(600)

S
R

Expands a 16-bit signed binary value to its 32-bit equivalent.

D+1 D

D = Contents of S

MSB = 0:
0000 Hex

MSB = 1:
FFFF Hex

S
MSB
100

Conversion Instructions Section 3-10
DATA DECODER
MLPX

@MLPX
076

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S: Source word
C: Control word
R: 1st result word

MLPX(076)

S

C

R

l=1 (Convert 2 digits.)

n=2 (Start with second digit.)

4-to-16 bit decoding
(Bit m of R is turned ON.)

C

R
R+1

Reads the numerical value in the specified digit (or byte) in the source word,
turns ON the corresponding bit in the result word (or 16-word range), and
turns OFF all other bits in the result word (or 16-word range).
4-to-16 bit conversion

8-to-256 bit conversion

l=1 (Convert 2 bytes.)

n=1 (Start with first byte.)

8-to-256 bit decoding
(Bit m of R to R+15 is turned ON.)

Two 16-word ranges
are used when l
specifies 2 bytes.

C

R+1

R+14
R+15
R+16
R+17

R+30
R+31
101

Conversion Instructions Section 3-10
DATA ENCODER
DMPX

@DMPX
077

Output
Required

ASCII CONVERT
ASC

@ASC
086

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S: 1st source
word
R: Result word
C: Control word

DMPX(077)

S

R

C

l=1 (Convert
2 words.)

n=2 (Start with digit 2.)

16-to-4 bit decoding
(Location of left-
most bit (m) is writ-
ten to R.)

FInds leftmost bit
(Highest bit address)

C

R

Leftmost bit Rightmost bit

l=0 (Convert one 16-word range.)

n=1 (Start with byte 1.)

256-to-8 bit decoding
(The location of the leftmost bit in the
16-word range (m) is written to R.)

Finds leftmost bit
(Highest bit address)

C

R

FInds the location of the first or last ON bit within the source word (or 16-word
range), and writes that value to the specified digit (or byte) in the result word.
16-to-4 bit conversion

256-to-8 bit conversion

Leftmost bit Rightmost bit

S: Source word
Di: Digit
designator
D: 1st destination
word

ASC(086)

S
Di

D

First digit to convert

Number of
digits (n+1)

Right (0)Left (1)

Di

Converts 4-bit hexadecimal digits in the source word into their 8-bit ASCII
equivalents.
102

Conversion Instructions Section 3-10
ASCII TO HEX
HEX

@HEX
162

Output
Required

COLUMN TO
LINE

LINE
@LINE

063

Output
Required

LINE TO COL-
UMN

COLM
@COLM

064

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S: 1st source
word
Di: Digit
designator
D: Destination
word

HEX(162)

S

Di

D First byte to convert

Number of digits (n+1)

Right (0)Left (1)

First digit to write

C: 0021
Di

Converts up to 4 bytes of ASCII data in the source word to their hexadecimal
equivalents and writes these digits in the specified destination word.

S: 1st source
word
N: Bit number
D: Destination
word

LINE(063)

S

N

D

Converts a column of bits from a 16-word range (the same bit number in 16
consecutive words) to the 16 bits of the destination word.

0

0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1

Bit
15

Bit
00

S

N

1 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1S+1
0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1S+2

 .
 .
 .

 .
 .
 .

 . . .

 .
 .
 .

0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0S+15

1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1S+3

0 1 1D 1

Bit
15

Bit
00

 .
 .
 .

S: Source word
D: 1st destination
word
N: Bit number

COLM(064)

S

D

N

Converts the 16 bits of the source word to a column of bits in a 16-word range
of destination words (the same bit number in 16 consecutive words).

0

0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1

Bit
15

Bit
00

D

Bi

1 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1D+1
0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1D+2

 .
 .
 .

 .
 .
 .

 .

 .
 .
 .

0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0D+15

1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1D+3

0 1 1S 1

Bit
15

Bit
00

 .
 .
 .
103

Conversion Instructions Section 3-10
SIGNED BCD-
TO-BINARY

BINS
@BINS

470

Output
Required

DOUBLE
SIGNED BCD-
TO-BINARY

BISL
@BISL

472

Output
Required

SIGNED BINARY-
TO-BCD

BCDS
@BCDS

471

Output
Required

DOUBLE
SIGNED BINARY-
TO-BCD

BDSL
@BDSL

473

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

C: Control word
S: Source word
D: Destination
word

BINS(470)

C

S

D

Signed BCD format
specified in C

Signed BCD Signed binary

Converts one word of signed BCD data to one word of signed binary data.

C: Control word
S: 1st source
word
D: 1st destination
word

BISL(472)

C

S

D

Signed BCD format
specified in C

Signed BCD Signed binary

Signed BCD Signed binary

Converts double signed BCD data to double signed binary data.

C: Control word
S: Source word
D: Destination
word

BCDS(471)

C

S

D

Signed BCD format
specified in C

Signed BCDSigned binary

Converts one word of signed binary data to one word of signed BCD data.

C: Control word
S: 1st source
word
D: 1st destination
word

BDSL(473)

C

S

D
Signed BCD format
specified in C

Signed BCDSigned binary
Signed BCDSigned binary

Converts double signed binary data to double signed BCD data.
104

Logic Instructions Section 3-11
3-11 Logic Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

LOGICAL AND
ANDW

@ANDW
034

Output
Required

DOUBLE LOGI-
CAL AND

ANDL
@ANDL

610

Output
Required

LOGICAL OR
ORW

@ORW
035

Output
Required

DOUBLE LOGI-
CAL OR

ORWL
@ORWL

611

Output
Required

EXCLUSIVE OR
XORW

@XORW
036

Output
Required

I1: Input 1
I2: Input 2
R: Result word

ANDW(034)

I1
I2
R

Takes the logical AND of corresponding bits in single words of word data
and/or constants.

I1. I2 → R

00

I1 I2 R

1 1 1

1 0 0

0 1 0

0

I1: Input 1
I2: Input 2
R: Result word

ANDL(610)

I1
I2
R

Takes the logical AND of corresponding bits in double words of word data
and/or constants.

(I1, I1+1). (I2, I2+1) → (R, R+1)

I1, I1+1 I2, I2+1 R, R+1

1 1 1

1 0 0

0 1 0

0 0 0

I1: Input 1
I2: Input 2
R: Result word

ORW(035)

I1
I2
R

Takes the logical OR of corresponding bits in single words of word data
and/or constants.

I1 + I2 → R

I1 I2 R

1 1 1

1 0 1

0 1 1

0 0 0

I1: Input 1
I2: Input 2
R: Result word

ORWL(611)

I1
I2
R

Takes the logical OR of corresponding bits in double words of word data
and/or constants.

(I1, I1+1) + (I2, I2+1) → (R, R+1)

I1, I1+1 I2, I2+1 R, R+1

1 1 1

1 0 1

0 1 1

0 0 0

I1: Input 1
I2: Input 2
R: Result word

XORW(036)

I1
I2

R

Takes the logical exclusive OR of corresponding bits in single words of word
data and/or constants.

I1. I2 + I1.I2 → R

I1 I2 R

1 1 0

1 0 1

0 1 1

0 0 0
105

Logic Instructions Section 3-11
DOUBLE
EXCLUSIVE OR

XORL
@XORL

612

Output
Required

EXCLUSIVE NOR
XNRW

@XNRW
037

Output
Required

DOUBLE
EXCLUSIVE NOR

XNRL
@XNRL

613

Output
Required

COMPLEMENT
COM

@COM
029

Output
Required

DOUBLE COM-
PLEMENT

COML
@COML

614

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

I1: Input 1
I2: Input 2
R: Result word

XORL(612)

I1
I2
R

Takes the logical exclusive OR of corresponding bits in double words of word
data and/or constants.

(I1, I1+1). (I2, I2+1) + (I1, I1+1). (I2, I2+1)→ (R, R+1)

I1, , I1+1 I2, , I2+1 R, R+1R, R+1

1 1 0

1 0 1

0 1 1

0 0 0

I1: Input 1
I2: Input 2
R: Result word

XNRW(037)

I1
I2
R

Takes the logical exclusive NOR of corresponding single words of word data
and/or constants.
I1. I2 + I1.I2 → R

I1 I2 R

1 1 1

1 0 0

0 1 0

0 0 1

I1: Input 1
I2: Input 2
R: 1st result word

XNRL(613)

I1
I2
R

Takes the logical exclusive NOR of corresponding bits in double words of
word data and/or constants.

(I1, I1+1). (I2, I2+1) + (I1, I1+1). (I2, I2+1) → (R, R+1)

I1, I1+1 I2, I2+1 R, R+1

1 1 1

1 0 0

0 1 0

0 0 1

Wd: Word

COM(029)

Wd

Turns OFF all ON bits and turns ON all OFF bits in Wd.

Wd→Wd: 1 → 0 and 0 → 1

Wd: Word

COML(614)

Wd

Turns OFF all ON bits and turns ON all OFF bits in Wd and Wd+1.

(Wd+1, Wd)→(Wd+1, Wd)
106

Special Math Instructions Section 3-12
3-12 Special Math Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

BINARY ROOT
ROTB

@ROTB
620

Output
Required

BCD SQUARE
ROOT

ROOT
@ROOT

072

Output
Required

ARITHMETIC
PROCESS

APR
@APR

069

Calculates the sine, cosine, or a linear extrapolation of the source data.
The linear extrapolation function allows any relationship between X and Y to be
approximated with line segments.

Output
Required

FLOATING
POINT DIVIDE

FDIV
@FDIV

079

Output
Required

BIT COUNTER
BCNT

@BCNT
067

Output
Required

S: 1st source
word
R: Result word

ROTB(620)

S

R

Computes the square root of the 32-bit binary content of the specified words
and outputs the integer portion of the result to the specified result word.

RS+1 S

Binary data (32 bits) Binary data (16 bits)

S: 1st source
word
R: Result word

ROOT(072)

S

R

Computes the square root of an 8-digit BCD number and outputs the integer
portion of the result to the specified result word.

RS+1 S

BCD data (8 digits) BCD data (4 digits)

C: Control word
S: Source data
R: Result word

APR(069)

C

S

R

Dd: 1st dividend
word
Dr: 1st divisor
word
R: 1st result word

FDIV(079)

Dd

Dr

R

Divides one 7-digit floating-point number by another. The floating-point
numbers are expressed in scientific notation (7-digit mantissa and 1-digit
exponent).

R+1 R

Quotient

Dd+1 DdDr+1 Dr

N: Number of
words
S: 1st source
word
R: Result word

BCNT(067)

N

S

R
S+(N–1)

to

N words

Counts the number
of ON bits.

Binary result

R

Counts the total number of ON bits in the specified word(s).
107

Floating-point Math Instructions Section 3-13
3-13 Floating-point Math Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

FLOATING TO
16-BIT

FIX
@FIX

450

Output
Required

FLOATING TO
32-BIT

FIXL
@FIXL

451

Output
Required

16-BIT TO
FLOATING

FLT
@FLT

452

Output
Required

32-BIT TO
FLOATING

FLTL
@FLTL

453

Output
Required

FLOATING-
POINT ADD

+F
@+F
454

Output
Required

FLOATING-
POINT
SUBTRACT

–F
@–F
455

Output
Required

S: 1st source
word
R: Result word

FIX(450)

S

R

Converts a 32-bit floating-point value to 16-bit signed binary data and places
the result in the specified result word.

S+1 S

R

Floating-point data
(32 bits)

Signed binary data
(16 bits)

S: 1st source
word
R: 1st result word

FIXL(451)

S

R

Converts a 32-bit floating-point value to 32-bit signed binary data and places
the result in the specified result words.

S+1 S Floating-point data
(32 bits)

Signed binary data
(32 bits)

R+1 R

S: Source word
R: 1st result word

FLT(452)

S

R

Converts a 16-bit signed binary value to 32-bit floating-point data and places
the result in the specified result words.

R+1 R

S

Floating-point data
(32 bits)

Signed binary data
(16 bits)

S: 1st source
word
R: 1st result word

FLTL(453)

S
R

Converts a 32-bit signed binary value to 32-bit floating-point data and places
the result in the specified result words.

R+1 R

S

Floating-point data
(32 bits)

Signed binary data
(32 bits)

S+1

Au: 1st augend
word
AD: 1st addend
word
R: 1st result word

+F(454)

Au

Ad

R

Adds two 32-bit floating-point numbers and places the result in the specified
result words.

R+1 R

Au Augend (floating-point
data, 32 bits)

Au+1

Ad Addend (floating-point
data, 32 bits)

Ad+1

Result (floating-point
data, 32 bits)

+

Mi: 1st Minuend
word
Su: 1st
Subtrahend word
R: 1st result word

–F(455)

Mi

Su

R

Subtracts one 32-bit floating-point number from another and places the result
in the specified result words.

R+1 R

Mi Minuend (floating-
point data, 32 bits)

Mi+1

Su Subtrahend (floating-
point data, 32 bits)

Su+1

Result (floating-
point data, 32 bits)

–

108

Floating-point Math Instructions Section 3-13
FLOATING-
POINT MULTIPLY

*F
@*F
456

Output
Required

FLOATING-
POINT DIVIDE

/F
@/F
457

Output
Required

DEGREES TO
RADIANS

RAD
@RAD

458

Output
Required

RADIANS TO
DEGREES

DEG
@DEG

459

Output
Required

SINE
SIN

@SIN
460

Output
Required

COSINE
COS

@COS
461

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Md: 1st
Multiplicand word
Mr: 1st Multiplier
word
R: 1st result word

*F(456)

Md

Mr

R

Multiplies two 32-bit floating-point numbers and places the result in the
specified result words.

R+1 R

Md Multiplicand (floating-
point data, 32 bits)

Md+1

Mr Multiplier (floating-
point data, 32 bits)

Mr+1

Result (floating-
point data, 32 bits)

×

Dd: 1st Dividend
word
Dr: 1st Divisor
word
R: 1st result word

/F(457)

Dd

Dr

R

Divides one 32-bit floating-point number by another and places the result in
the specified result words.

R+1 R

Dd Dividend (floating-
point data, 32 bits)

Dd+1

Dr Divisor (floating-
point data, 32 bits)

Dr+1

Result (floating-
point data, 32 bits)

÷

S: 1st source
word
R: 1st result word

RAD(458)

S

R

Converts a 32-bit floating-point number from degrees to radians and places
the result in the specified result words.

R+1 R

S Source (degrees, 32-bit
floating-point data)

S+1

Result (radians, 32-bit
floating-point data)

S: 1st source
word
R: 1st result word

DEG(459)

S

R

Converts a 32-bit floating-point number from radians to degrees and places
the result in the specified result words.

R+1 R

S Source (radians, 32-bit
floating-point data)

S+1

Result (degrees, 32-bit
floating-point data)

S: 1st source
word
R: 1st result word

SIN(460)

S

R

Calculates the sine of a 32-bit floating-point number (in radians) and places
the result in the specified result words.

R+1 R

S Source (32-bit
floating-point
data)

S+1

Result (32-bit
floating-point
data)

SIN

S: 1st source
word
R: 1st result word

COS(461)

S

R

Calculates the cosine of a 32-bit floating-point number (in radians) and places
the result in the specified result words.

R+1 R

S
Source (32-bit
floating-point
data)

S+1

Result (32-bit
floating-point
data)

COS
109

Floating-point Math Instructions Section 3-13
TANGENT
TAN

@TAN
462

Output
Required

ARC SINE
ASIN

@ASIN
463

Output
Required

ARC COSINE
ACOS

@ACOS
464

Output
Required

ARC TANGENT
ATAN

@ATAN
465

Output
Required

SQUARE ROOT
SQRT

@SQRT
466

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S: 1st source
word
R: 1st result word

TAN(462)

S

R

Calculates the tangent of a 32-bit floating-point number (in radians) and
places the result in the specified result words.

R+1 R

S Source (32-bit
floating-point
data)

S+1

Result (32-bit
floating-point
data)

TAN

S: 1st source
word
R: 1st result word

ASIN(463)

S

R

Calculates the arc sine of a 32-bit floating-point number and places the result
in the specified result words. (The arc sine function is the inverse of the sine
function; it returns the angle that produces a given sine value between −1 and
1.)

R+1 R

S
Source (32-bit
floating-point
data)

S+1

Result (32-bit
floating-point
data)

SIN-1

S: 1st source
word
R: 1st result word

ACOS(464)

S

R

Calculates the arc cosine of a 32-bit floating-point number and places the
result in the specified result words. (The arc cosine function is the inverse of
the cosine function; it returns the angle that produces a given cosine value
between −1 and 1.)

R+1 R

S
Source (32-bit
floating-point
data)

S+1

Result (32-bit
floating-point
data)

COS-1

S: 1st source
word
R: 1st result word

ATAN(465)

S

R

Calculates the arc tangent of a 32-bit floating-point number and places the
result in the specified result words. (The arc tangent function is the inverse of
the tangent function; it returns the angle that produces a given tangent value.)

R+1 R

S
Source (32-bit
floating-point
data)

S+1

Result (32-bit
floating-point
data)

TAN-1

S: 1st source
word
R: 1st result word

SQRT(466)

S

R

Calculates the square root of a 32-bit floating-point number and places the
result in the specified result words.

R+1 R

S
Source (32-bit
floating-point
data)

S+1

Result (32-bit
floating-point
data)
110

Floating-point Math Instructions Section 3-13
EXPONENT
EXP

@EXP
467

Output
Required

LOGARITHM
LOG

@LOG
468

Output
Required

EXPONENTIAL
POWER

PWR
@PWR

840

Output
Required

Floating Symbol
Comparison
(CS1-H, CJ1-H,
or CJ1M only)

LD, AND. or OR
+

=F (329),
<>F (330),

<F (331),
<=F (332),

>F (333),
or >=F (334)

Compares the specified single-precision data (32 bits) or constants and creates
an ON execution condition if the comparison result is true.
Three kinds of symbols can be used with the floating-point symbol comparison
instructions: LD (Load), AND, and OR.

LD:
Not required

AND or OR:
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S: 1st source
word
R: 1st result word

EXP(467)

S

R

Calculates the natural (base e) exponential of a 32-bit floating-point number
and places the result in the specified result words.

R+1 R

S
Source (32-bit
floating-point
data)

S+1

Result (32-bit
floating-point
data)

e

S: 1st source
word
R: 1st result word

LOG(468)

S

R

Calculates the natural (base e) logarithm of a 32-bit floating-point number and
places the result in the specified result words.

R+1 R

S
Source (32-bit
floating-point
data)

S+1

Result (32-bit
floating-point
data)

loge

B: 1st base word
E: 1st exponent
word
R: 1st result word

PWR(840)

B

E

R

Raises a 32-bit floating-point number to the power of another 32-bit
floating-point number.

R+1 RB+1 S

EE+1
Power

Base

S1: Comparison data 1
S2: Comparison data 2

Symbol, option

S1

S2

Using LD:

Symbol, option

S1

S2

Using AND:

Symbol, option

S1

S2

Using OR:
111

Double-precision Floating-point Instructions (CS1-H, CJ1-H, or CJ1M Only) Section 3-14
3-14 Double-precision Floating-point Instructions�(CS1-H, CJ1-
H, or CJ1M Only)�

FLOATING-
POINT TO ASCII
(CS1-H, CJ1-H,
or CJ1M only)

FSTR
@FSTR

448

Converts the specified single-precision floating-point data (32-bit decimal-point
or exponential format) to text string data (ASCII) and outputs the result to the
destination word.

Output
required

ASCII TO FLOAT-
ING-POINT
(CS1-H, CJ1-H,
or CJ1M only)

FVAL
@FVAL

449

Converts the specified text string (ASCII) representation of single-precision
floating-point data (decimal-point or exponential format) to 32-bit single-preci-
sion floating-point data and outputs the result to the destination words.

Output
required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

DOUBLE FLOAT-
ING TO 16-BIT
BINARY

FIXD
@FIXD

841

Converts the specified double-precision floating-point data (64 bits) to 16-bit
signed binary data and outputs the result to the destination word.

Output
Required

DOUBLE FLOAT-
ING TO 32-BIT
BINARY

FIXLD
@FIXLD

842

Converts the specified double-precision floating-point data (64 bits) to 32-bit
signed binary data and outputs the result to the destination words.

Output
Required

16-BIT BINARY
TO DOUBLE
FLOATING

DBL
@DBL

843

Converts the specified 16-bit signed binary data to double-precision floating-
point data (64 bits) and outputs the result to the destination words.

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S: 1st source
word
C: Control word
D: Destination
word

FSTR(448)

S

C

D

S: Source word
D: 1st destination
word

FVAL(449)

S

D

S: 1st source
word
D: Destination
word

FIXD(841)

S

D

S: 1st source
word
D: 1st destination
word

FIXLD(842)

S

D

S: Source word
D: 1st destination
word

DBL(843)

S

D

112

Double-precision Floating-point Instructions (CS1-H, CJ1-H, or CJ1M Only) Section 3-14
32-BIT BINARY
TO DOUBLE
FLOATING

DBLL
@DBLL

844

Converts the specified 32-bit signed binary data to double-precision floating-
point data (64 bits) and outputs the result to the destination words.

Output
Required

DOUBLE FLOAT-
ING-POINT ADD

+D
@+D

845

Adds the specified double-precision floating-point values (64 bits each) and
outputs the result to the result words.

Output
Required

DOUBLE FLOAT-
ING-POINT SUB-
TRACT

�D
@�D

846

Subtracts the specified double-precision floating-point values (64 bits each)
and outputs the result to the result words.

Output
Required

DOUBLE FLOAT-
ING-POINT MUL-
TIPLY

�D
@�D

847

Multiplies the specified double-precision floating-point values (64 bits each) and
outputs the result to the result words.

Output
Required

DOUBLE FLOAT-
ING-POINT
DIVIDE

/D
@/D
848

Divides the specified double-precision floating-point values (64 bits each) and
outputs the result to the result words.

Output
Required

DOUBLE
DEGREES TO
RADIANS

RADD
@RADD

849

Converts the specified double-precision floating-point data (64 bits) from
degrees to radians and outputs the result to the result words.

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S: 1st source
word
D: 1st destination
word

DBLL(844)

S

D

Au: 1st augend
word
Ad: 1st addend
word
R: 1st result word

+D(845)

Au

Ad

R

Mi: 1st minuend
word
Su: 1st subtra-
hend word
R: 1st result word

−D(846)

Mi

Su

R

Md: 1st multipli-
cand word
Mr: 1st multiplier
word
R: 1st result word

*D(847)

Md

Mr

R

Dd: 1st Dividend
word
Dr: 1st divisor
word
R: 1st result word

/D(848)

Dd

Dr

R

S: 1st source
word
R: 1st result word

RADD(849)

S

R

113

Double-precision Floating-point Instructions (CS1-H, CJ1-H, or CJ1M Only) Section 3-14
DOUBLE RADI-
ANS TO
DEGREES

DEGD
@DEGD

850

Converts the specified double-precision floating-point data (64 bits) from radi-
ans to degrees and outputs the result to the result words.

Output
Required

DOUBLE SINE
SIND

@SIND
851

Calculates the sine of the angle (radians) in the specified double-precision
floating-point data (64 bits) and outputs the result to the result words.

Output
Required

DOUBLE
COSINE

COSD
@COSD

852

Calculates the cosine of the angle (radians) in the specified double-precision
floating-point data (64 bits) and outputs the result to the result words.

Output
Required

DOUBLE TAN-
GENT

TAND
@TAND

853

Calculates the tangent of the angle (radians) in the specified double-precision
floating-point data (64 bits) and outputs the result to the result words.

Output
Required

DOUBLE ARC
SINE

ASIND
@ASIND

854

Calculates the angle (in radians) from the sine value in the specified double-
precision floating-point data (64 bits) and outputs the result to the result words.
(The arc sine function is the inverse of the sine function; it returns the angle that
produces a given sine value between �1 and 1.)

Output
Required

DOUBLE ARC
COSINE

ACOSD
@ACOSD

855

Calculates the angle (in radians) from the cosine value in the specified double-
precision floating-point data (64 bits) and outputs the result to the result words.
(The arc cosine function is the inverse of the cosine function; it returns the
angle that produces a given cosine value between �1 and 1.)

Output
Required

DOUBLE ARC
TANGENT

ATAND
@ATAND

856

Calculates the angle (in radians) from the tangent value in the specified double-
precision floating-point data (64 bits) and outputs the result to the result words.
(The arc tangent function is the inverse of the tangent function; it returns the
angle that produces a given tangent value.)

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S: 1st source
word
R: 1st result word

DEGD(850)

S

R

S: 1st source
word
R: 1st result word

SIND(851)

S

R

S: 1st source
word
R: 1st result word

COSD(852)

S

R

S: 1st source
word
R: 1st result word

TAND(853)

S

R

S: 1st source
word
R: 1st result word

ASIND(854)

S

R

S: 1st source
word
R: 1st result word

ACOSD(855)

S

R

S: 1st source
word
R: 1st result word

ATAND(856)

S

R

114

Double-precision Floating-point Instructions (CS1-H, CJ1-H, or CJ1M Only) Section 3-14
DOUBLE
SQUARE ROOT

SQRTD
@SQRTD

857

Calculates the square root of the specified double-precision floating-point data
(64 bits) and outputs the result to the result words.

Output
Required

DOUBLE EXPO-
NENT

EXPD
@EXPD

858

Calculates the natural (base e) exponential of the specified double-precision
floating-point data (64 bits) and outputs the result to the result words.

Output
Required

DOUBLE LOGA-
RITHM

LOGD
@LOGD

859

Calculates the natural (base e) logarithm of the specified double-precision float-
ing-point data (64 bits) and outputs the result to the result words.

Output
Required

DOUBLE EXPO-
NENTIAL
POWER

PWRD
@PWRD

860

Raises a double-precision floating-point number (64 bits) to the power of
another double-precision floating-point number and outputs the result to the
result words.

Output
Required

DOUBLE SYM-
BOL COMPARI-
SON

LD, AND. or OR
+

=D (335),
<>D (336),

<D (337),
<=D (338),

>D (339),
or >=D (340)

Compares the specified double-precision data (64 bits) and creates an ON exe-
cution condition if the comparison result is true.
Three kinds of symbols can be used with the floating-point symbol comparison
instructions: LD (Load), AND, and OR.

LD:
Not required

AND or OR:
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S: 1st source
word
R: 1st result word

SQRTD(857)

S

R

S: 1st source
word
R: 1st result word

EXPD(858)

S

R

S: 1st source
word
R: 1st result word

LOGD(859)

S

R

B: 1st base word
E: 1st exponent
word
R: 1st result word

PWRD(860)

B

E

R

S1: Comparison data 1
S2: Comparison data 2

Symbol, option

S1

S2

Using LD:

Symbol, option

S1

S2

Using AND:

Symbol, option

S1

S2

Using OR:
115

Table Data Processing Instructions Section 3-15
3-15 Table Data Processing Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

SET STACK
SSET

@SSET
630

Output
Required

PUSH ONTO
STACK

PUSH
@PUSH

632

Output
Required

LAST IN FIRST
OUT

LIFO
@LIFO

634

Output
Required

FIRST IN FIRST
OUT

FIFO
@FIFO

633

Output
Required

TB: 1st stack
address
N: Number of
words

SSET(630)

TB

N

m+(N-1)

m+(N–1)

Last word
in stack

Stack
pointer

PLC memory
address

N words
in stack

TB

TB+1

TB+2

TB+3

Defines a stack of the specified length beginning at the specified word and
initializes the words in the data region to all zeroes.

TB: 1st stack
address
S: Source word

PUSH(632)

TB

S

PLC memory
address

PUSH(632)

PLC memory
address

TB

TB+1

TB+2

TB+3

TB

TB+1

TB+2

TB+3

Writes one word of data to the specified stack.

TB: 1st stack
address
D: Destination
word

LIFO(634)

TB

D
TB

TB+1

TB+2

TB+3

TB

TB+1

TB+2

TB+3

m–1

m–1

m–1

PLC memory
address

Newest
data

PLC memory
address

Last-in first-out

Stack
pointer

Stack
pointer

A is
left un-
chang-
ed.

The pointer is
decremented.

Reads the last word of data written to the specified stack (the newest data in the
stack).

TB: 1st stack
address
D: Destination
word

FIFO(633)

TB

D

m–1

m–1

PLC memory
address

Oldest
data

PLC memory
address

First-in first-out

Stack
pointer

Stack
pointer

TB

TB+1

TB+2

TB+3

TB

TB+1

TB+2

TB+3

Reads the first word of data written to the specified stack (the oldest data in the
stack).
116

Table Data Processing Instructions Section 3-15
DIMENSION
RECORD TABLE

DIM
@DIM

631

Output
Required

SET RECORD
LOCATION

SETR
@SETR

635

Output
Required

GET RECORD
NUMBER

GETR
@GETR

636

Output
Required

DATA SEARCH
SRCH

@SRCH
181

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

N: Table number
LR: Length of
each record
NR: Number of
records
TB: 1st table
word

DIM(631)

N

LR

NR

TB

Number of records

Table number (N)

LR x NR words

Record NR−1

Record 0

Defines a record table by declaring the length of each record and the number of
records. Up to 16 record tables can be defined.

Record 1

Record

Record

Record

N: Table number
R: Record
number
D: Destination
Index Register

SETR(635)

N

R

D

Record
number (R)

Table number (N)
PLC memory
address

SETR(635) writes the PLC memory ad-
dress (m) of the first word of record R
to Index Register D.R

Writes the location of the specified record (the PLC memory address of the
beginning of the record) in the specified Index Register.

N: Table number
IR: Index Register
D: Destination
word

GETR(636)

N

IR

D

Record number
(R)

Table number (N) PLC memory
address

IR

n

Returns the record number of the record at the PLC memory address contained
in the specified Index Register.

GETR(636) writes
the record number of
the record that in-
cludes I/O memory
address (m) to D.

C: 1st control
word
R1: 1st word in
range
Cd: Comparison
data

SRCH(181)

C

R1

Cd

R1+(C–1)

PLC memory
address

Search

Match

C

R1

Cd

Searches for a word of data within a range of words.
117

Table Data Processing Instructions Section 3-15
SWAP BYTES
SWAP

@SWAP
637

Output
Required

FIND MAXIMUM
MAX

@MAX
182

Output
Required

FIND MINIMUM
MIN

@MIN
183

Output
Required

SUM
SUM

@SUM
184

Output
Required

FRAME
CHECKSUM

FCS
@FCS

180

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

N: Number of
words
R1: 1st word in
range

SWAP(637)

N

R1

Byte position is swapped.

N

R1

Switches the leftmost and rightmost bytes in all of the words in the range.

C: 1st control
word
R1: 1st word in
range
D: Destination
word

MAX(182)

C

R1

D

R1+(W–1)

R1

PLC memory
address

Max.
value

C words

Finds the maximum value in the range.

C: 1st control
word
R1: 1st word in
range
D: Destination
word

MIN(183)

C

R1

D

R1+(W–1)

R1

PLC memory
address

Min. value

C words

Finds the minimum value in the range.

C: 1st control
word
R1: 1st word in
range
D: 1st destination
word

SUM(184)

C

R1

D

)
R1+(W–1)

R1

Adds the bytes or words in the range and outputs the result to two words.

C: 1st control
word
R1: 1st word in
range
D: 1st destination
word

FCS(180)

C

R1

D

C units

Calculation
FCS value

ASCII conversion

R1

Calculates the ASCII FCS value for the specified range.
118

Table Data Processing Instructions Section 3-15
STACK SIZE
READ
(CS1-H, CJ1-H,
or CJ1M only)

SNUM
@SNUM

638

Counts the amount of stack data (number of words) in the specified stack. Output
required

STACK DATA
READ
(CS1-H, CJ1-H,
or CJ1M only)

SREAD
@SREAD

639

Reads the data from the specified data element in the stack. The offset value
indicates the location of the desired data element (how many data elements
before the current pointer position).

Output
required

STACK DATA
OVERWRITE
(CS1-H, CJ1-H,
or CJ1M only)

SWRIT
@SWRIT

640

Writes the source data to the specified data element in the stack (overwriting the
existing data). The offset value indicates the location of the desired data element
(how many data elements before the current pointer position).

Output
required

STACK DATA
INSERT
(CS1-H, CJ1-H,
or CJ1M only)

SINS
@SINS

641

Inserts the source data at the specified location in the stack and shifts the rest of
the data in the stack downward. The offset value indicates the location of the
insertion point (how many data elements before the current pointer position).

Output
required

STACK DATA
DELETE
(CS1-H, CJ1-H,
or CJ1M only)

SDEL
@SDEL

642

Deletes the data element at the specified location in the stack and shifts the rest
of the data in the stack upward. The offset value indicates the location of the
deletion point (how many data elements before the current pointer position).

Output
required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

TB: First stack
address
D: Destination
word

SNUM(638)

TB

D

TB: First stack
address
C: Offset value
D: Destination
word

SREAD(639)

TB

C

D

TB: First stack
address
C: Offset value
S: Source data

SWRIT(640)

TB

C

S

TB: First stack
address
C: Offset value
S: Source data

SINS(641)

TB

C

S

TB: First stack
address
C: Offset value
D: Destination
word

SDEL(642)

TB

C

D

119

Data Control Instructions Section 3-16
3-16 Data Control Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

PID CONTROL
PID
190

Output
Required

PID CONTROL
WITH AUTO
TUNING
(CS1-H, CJ1-H,
or CJ1M only)

PIDAT
191

Executes PID control according to the specified parameters. The PID con-
stants can be auto-tuned with PIDAT(191).

Output
required

LIMIT CONTROL
LMT

@LMT
680

Output
Required

DEAD BAND
CONTROL

BAND
@BAND

681

Output
Required

S: Input word
C: 1st parameter
word
D: Output word

PID(190)

S

C

D PV input (S) PID control

Manipulated variable (D)

Parameters (C to C+8)

Executes PID control according to the specified parameters.

S: Input word
C: 1st parameter
word
D: Output word

PIDAT(191)

S

C

D

S: Input word
C: 1st limit word
D: Output word

LMT(680)

S

C

D

Upper limit
C+1

Lower limit
C

Controls output data according to whether or not input data is within upper
and lower limits.

S: Input word
C: 1st limit word
D: Output word

BAND(681)

S

C

D

Upper limit (C+1)

Output

Input

Lower limit (C)

Controls output data according to whether or not input data is within the dead
band range.
120

Data Control Instructions Section 3-16
DEAD ZONE
CONTROL

ZONE
@ZONE

682

Output
Required

SCALING
SCL

@SCL
194

Output
Required

SCALING 2
SCL2

@SCL2
486

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S: Input word
C: 1st limit word
D: Output word

ZONE(682)

S

C

D
Positive bias (C+1)

Output

Input

Negative bias (C)

Adds the specified bias to input data and outputs the result.

S: Source word
P1: 1st parameter
word
R: Result word

SCL(194)

S

P1

R
(BCD)

(BIN)

(BCD)

(BIN)

R (unsigned BCD)

Point A

Point B

S (unsigned binary)

P
P1 + 1

P1 + 2

P1 + 3

Converted
value

Converted
value

Scaling is performed according
to the linear function defined
by points A and B.

Converts unsigned binary data into unsigned BCD data according to the
specified linear function.

S: Source word
P1: 1st parameter
word
R: Result word

SCL2(486)

S

P1

R

∆Y

∆X

∆Y

∆X

∆Y

∆X

∆Y

∆X

R (signed BCD)

S (signed binary)

P1

P1 + 1

P1 + 2

Positive Offset

Offset

R (signed BCD)

S (signed
binary)

Negative Offset

Offset

R (signed BCD)

S (signed
binary)

Offset of 0000

Offset = 0000 hex

Offset (Signed binary)

(Signed binary)

(Signed BCD)

Converts signed binary data into signed BCD data according to the specified
linear function. An offset can be input in defining the linear function.
121

Data Control Instructions Section 3-16
SCALING 3
SCL3

@SCL3
487

Output
Required

AVERAGE
AVG
195

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S: Source word
P1: 1st parameter
word
R: Result word

SCL3(487)

S

P1

R R (signed binary)

S (signed BCD)

Positive Offset

Offset

R (signed binary)

S (signed BCD)

Negative Offset

Offset

∆X

∆Y

R (signed binary)

S (signed BCD)

Offset of 0000

∆X

∆Y

Max
conver-
sion

Min.
conver-
sion

Max conversion

Min. conversion

Max
conver-
sion

Min. conversion

∆X

∆Y

Converts signed BCD data into signed binary data according to the
specified linear function. An offset can be input in defining the linear
function.

S: Source word
N: Number of
cycles
R: Result word

AVG(195)

S

N

R

S: Source word

N: Number of cycles

Average

N values

Pointer

Average Valid Flag

R + N + 1

R

R + 1

R + 2

R + 3

Calculates the average value of an input word for the specified number of
cycles.
122

Subroutine Instructions Section 3-17
3-17 Subroutine Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

SUBROUTINE
CALL

SBS
@SBS

091

Output
Required

MACRO
MCRO

@MCRO
099

Output
Required

SUBROUTINE
ENTRY

SBN
092

Output
Not required

SUBROUTINE
RETURN

RET
093

Indicates the end of a subroutine program. Output
Not required

N: Subroutine
number

SBS(091)

N

Main program

Subroutine
program
(SBN(092) to
RET(093))

Execution condition ON

Program end

Calls the subroutine with the specified subroutine number and executes that
program.

N: Subroutine
number
S: 1st input
parameter word
D: 1st output
parameter word

MCRO(099)

N

S

D
MCRO(099)

MCRO(099)

Execution of subroutine
between SBN(092) and
RET(093).

The subroutine uses A600
to A603 as inputs and A604
to A607 as outputs.

Calls the subroutine with the specified subroutine number and executes that
program using the input parameters in S to S+3 and the output parameters in
D to D+3.

N: Subroutine
number

SBN(092)

N

Subroutine region

or

Indicates the beginning of the subroutine program with the specified
subroutine number.

RET(093)
123

Subroutine Instructions Section 3-17
GLOBAL SUB-
ROUTINE CALL
(CS1-H, CJ1-H,
or CJ1M only)

GSBS
750

Calls the subroutine with the specified subroutine number and executes that
program.

Output
Not required

GLOBAL SUB-
ROUTINE ENTRY
(CS1-H, CJ1-H,
or CJ1M only)

GSBN
751

Indicates the beginning of the subroutine program with the specified subroutine
number.

Output
Not required

GLOBAL SUB-
ROUTINE
RETURN
(CS1-H, CJ1-H,
or CJ1M only)

GRET
752

Indicates the end of a subroutine program. Output
Not required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

N: Subroutine
number

GSBS(750)

N

N: Subroutine
number

GSBN(751)

N

GRET(752)
124

Interrupt Control Instructions Section 3-18
3-18 Interrupt Control Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

SET INTERRUPT
MASK

MSKS
@MSKS

690

Output
Required

READ INTER-
RUPT MASK

MSKR
@MSKR

692

Reads the current interrupt processing settings that were set with MSKS(690). Output
Required

CLEAR
INTERRUPT

CLI
@CLI

691

Output
Required

N: Interrupt
identifier
S: Interrupt data

MSKS(690)

N

S
Interrupt Input Unit 0 to 3

Mask (1) or unmask (0)
interrupt inputs 0 to 7.

I/O
interrupt

Time interval

Set scheduled interrupt
time interval.

Scheduled
interrupt

Sets up interrupt processing for I/O interrupts or scheduled interrupts. Both I/O
interrupt tasks and scheduled interrupt tasks are masked (disabled) when the
PC is first turned on. MSKS(690) can be used to unmask or mask I/O
interrupts and set the time intervals for scheduled interrupts.
(I/O Interrupts are not supported by CJ1 CPU Units.)

N: Interrupt
identifier
D: Destination
word

MSKR(692)

N

D

N: Interrupt
identifier
S: Interrupt data

CLI(691)

N

S Interrupt
input n

Recorded interrupt cleared

Internal
status

Recorded interrupt retained

Interrupt
input n

Internal
status

Time to first
scheduled interrupt

Execution of scheduled
interrupt task.

MSKS(690)

Clears or retains recorded interrupt inputs for I/O interrupts or sets the time to
the first scheduled interrupt for scheduled interrupts.
N = 0 to 3 (I/O Interrupts are not supported by CJ1 CPU Units.)

N = 4 to 5
125

Interrupt Control Instructions Section 3-18
DISABLE
INTERRUPTS

DI
@DI
693

Output
Required

ENABLE
INTERRUPTS

EI
694

Output
Not required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

DI(693)

Disables execution of all
interrupt tasks (except
the power OFF interrupt).

Disables execution of all interrupt tasks except the power OFF interrupt.

EI(694)

Disables execution of all
interrupt tasks (except the
power OFF interrupt).

Enables execution of all
disabled interrupt tasks.

Enables execution of all interrupt tasks that were disabled with DI(693).
126

High-speed Counter and Pulse Output Instructions (CJ1M-CPU22/23 Only) Section 3-19
3-19 High-speed Counter and Pulse Output Instructions (CJ1M-
CPU22/23 Only)

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

MODE CONTROL
INI

@INI
880

P: Port specifier
C: Control data
NV: 1st word with
new PV

INI(880) is used to start and stop target value comparison, to change
the present value (PV) of a high-speed counter, to change the PV of
an interrupt input (counter mode), to change the PV of a pulse output,
or to stop pulse output.

Output
Required

HIGH-SPEED
COUNTER PV
READ

PRV
@PRV

881

P: Port specifier
C: Control data
D: 1st destination
word

PRV(881) is used to read the present value (PV) of a high-speed
counter, pulse output, or interrupt input (counter mode).

Output
Required

COMPARISON
TABLE LOAD

CTBL
@CTBL

882

P: Port specifier
C: Control data
TB: 1st compari-
son table word

CTBL(882) is used to perform target value or range comparisons for the
present value (PV) of a high-speed counter.

Output
Required

SPEED OUTPUT
SPED

@SPED
885

P: Port specifier
M: Output mode
F: 1st pulse fre-
quency word

SPED(885) is used to specify the frequency and perform pulse output without
acceleration or deceleration.

Output
Required

SET PULSES
PULS

@PULS
886

P: Port specifier
T: Pulse type
N: Number of
pulses

PULS(886) is used to set the number of pulses for pulse output. Output
Required

INI

P

C

NV

PRV

P

C

D

CTBL

P

C

TB

SPED

P

M

F

PULS

P

T

N

127

Step Instructions Section 3-20
3-20 Step Instructions

PULSE OUTPUT
PLS2

@PLS2
887

P: Port specifier
M: Output mode
S: 1st word of set-
tings table
F: 1st word of
starting frequency

PLS2(887) is used to set the pulse frequency and acceleration/deceleration
rates, and to perform pulse output with acceleration/deceleration (with different
acceleration/deceleration rates). Only positioning is possible.

Output
Required

ACCELERATION
CONTROL

ACC
@ACC

888

P: Port specifier
M: Output mode
S: 1st word of set-
tings table

ACC(888) is used to set the pulse frequency and acceleration/deceleration
rates, and to perform pulse output with acceleration/deceleration (with the
same acceleration/deceleration rate). Both positioning and speed control are
possible.

Output
Required

ORIGIN SEARCH
ORG

@ORG
889

P: Port specifier
C: Control data

ORG(889) is used to perform origin searches and returns. Output
Required

PULSE WITH
VARIABLE DUTY
FACTOR

PWM
@

891

P: Port specifier
F: Frequency
D: Duty factor

PWM(891) is used to output pulses with a variable duty factor. Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

STEP DEFINE
STEP

008

STEP(008) functionS in following 2 ways, depending on its position and
whether or not a control bit has been specified.
(1)Starts a specific step.
(2)Ends the step programming area (i.e., step execution).

Output
Required

STEP START
SNXT

009

SNXT(009) is used in the following three ways:
(1)To start step programming execution.
(2)To proceed to the next step control bit.
(3)To end step programming execution.

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

PLS2

P

M

S

F

ACC

P

M

S

ORG

P

C

PWM

P

F

D

B: Bit

STEP(008)

B

B: Bit

SNXT(009)

B

128

Basic I/O Unit Instructions Section 3-21
3-21 Basic I/O Unit Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

I/O REFRESH
IORF

@IORF
097

Output
Required

7-SEGMENT
DECODER

SDEC
@SDEC

078

Output
Required

INTELLIGENT I/O
READ

IORD
@IORD

222

Output
Required

St: Starting word
E: End word

IORF(097)

St

E

I/O bit area or
Special I/O Unit bit area

I/O Unit or
Special I/O Unit

I/O refreshingSt

E

Refreshes the specified I/O words.

S: Source word
Di: Digit
designator
D: 1st destination
word

SDEC(078)

S

Di

D
Number of digits

First digit to convert

Rightmost 8 bits (0)

Di

7-segment

Converts the hexadecimal contents of the designated digit(s) into 8-bit,
7-segment display code and places it into the upper or lower 8-bits of the
specified destination words.

C: Control data
S: Transfer
source and
number of words
D: Transfer
destination and
number of words

IORD(222)

C

S

D

Desig-
nated
number
of words
read.

S
S+1

Unit number of Special I/O Unit

Reads the contents of the I/O Unit's memory area.
129

Serial Communications Instructions Section 3-22
3-22 Serial Communications Instructions

INTELLIGENT I/O
WRITE

IOWR
@IOWR

223

Output
Required

CPU BUS UNIT
I/O REFRESH
(CS1-H, CJ1-H,
or CJ1M only)

DLNK
@DLNK

226

Immediately refreshes the I/O in the CPU Bus Unit with the specified unit num-
ber.

Output
required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

PROTOCOL
MACRO

PMCR
@PMCR

260

Output
Required

TRANSMIT
TXD

@TXD
236

Outputs the specified number of bytes of data from the RS-232C port built into
the CPU Unit.

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

C: Control data
S: Transfer
source and
number of words
D: Transfer
destination and
number of words

IOWR(223)

C

S

D

Desig-
nated
number of
words writ-
ten.

D
D+1

Unit number of Special I/O Unit

Outputs the contents of the CPU Unit's I/O memory area to the Special I/O
Unit.

N: Unit number

DLNK(226)

N

C1:Control word 1
C2: Control word 2
S: 1st send word
R: 1st receive word

PMCR(260)

C1

C2

S

R
to

to
R

CPU Unit Serial Communications Unit

External
device

Port

S

Calls and executes a communications sequence registered in a Serial
Communications Board (CS Series only) or Unit

Communications
sequence number

S: 1st source
word
C: Control word
N: Number of
bytes
0000 to 0100 hex
(0 to 256 decimal)

TXD(236)

S

C

N

130

Network Instructions Section 3-23
3-23 Network Instructions

RECEIVE
RXD

@RXD
235

Reads the specified number of bytes of data from the RS-232C port built into
the CPU Unit.

Output
Required

CHANGE SERIAL
PORT SETUP

STUP
@STUP

237

Changes the communications parameters of a serial port on the CPU Unit,
Serial Communications Unit (CPU Bus Unit), or Serial Communications Board
(CS Series only). STUP(237) thus enables the protocol mode to be changed
during PLC operation.

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

NETWORK SEND
SEND

@SEND
090

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

D: 1st destination
word
C: Control word
N: Number of
bytes to store
0000 to 0100 hex
(0 to 256 decimal)

RXD(235)

D

C

N

C: Control word
(port)
S: First source
word

STUP(237)

C

S

S: 1st source
word
D: 1st destination
word
C: 1st control
word

SEND(090)

S

D

C
D

15 0

n

S

15 0

n: No. of
send
words

Transmits data to a node in the network.

Local node Destination node
131

Network Instructions Section 3-23
NETWORK
RECEIVE

RECV
@RECV

098

Output
Required

DELIVER
COMMAND

CMND
@CMND

490

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S: 1st source
word
D: 1st destination
word
C: 1st control
word

RECV(098)

S

D

C D
15 0 15 0

S

m n

Requests data to be transmitted from a node in the network and receives the
data.

Source nodeLocal node

S: 1st command
word
D: 1st response
word
C: 1st control
word

CMND(490)

S

D

C

D

15 0

15 0

S

2
m

+
(D–1)

2
n

+

(S–1)

Sends FINS commands and receives the response.

Destination nodeLocal node

Re-
sponse
data (m
bytes)

Command

Response

Interpret

Execute

Com-
mand
data (n
bytes)
132

File Memory Instructions Section 3-24
3-24 File Memory Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

READ DATA FILE
FREAD

@FREAD
700

Output
Required

WRITE DATA
FILE

FWRIT
@FWRIT

701

Output
Required

C: Control word
S1: 1st source
word
S2: Filename
D: 1st destination
word

FREAD(700)

C

S1

S2

D

Memory Card or EM file memory
(Specified by the 4th digit of C.)

File specified
in S2 CPU Unit

Number of
words

Number
of words
written
to D and
D+1.

Reads the specified data or amount of data from the specified data file in file
memory to the specified data area in the CPU Unit.

Memory Card or
EM file memory
(Specified by the
4th digit of C.)

Starting read address
specified in S1+2 and
S1+3

File specified
in S2 CPU Unit

Number of
words specified
in S1 and S1+1

D

C: Control word
D1: 1st
destination word
D2: Filename
S: 1st source
word

FWRIT(701)

C

D1

D2

S

Memory Card or EM file memory
(Specified by the 4th digit of C.)

File specified in D2CPU Unit Starting word
specified in
D1+2 and
D1+3

Number of
words specified
in D1 and D1+1

Overwrite

Starting
address
specified
in S

Memory Card or EM file memory
(Specified by the 4th digit of C.)

File specified in D2CPU Unit
End of
file

Number of
words specified
in D1 and D1+1

Append

Starting
address
specified
in S

Existing
data

Memory Card or EM file memory
(Specified by the 4th digit of C.)

File speci-
fied in D2CPU Unit

Beginning
of file

Number of words
specified in D1
and D1+1

Starting
address
specified
in S

New file created

Overwrites or appends data in the specified data file in file memory with the
specified data from the data area in the CPU Unit. If the specified file doesn't
exist, a new file is created with that filename.
133

Display Instructions Section 3-25
3-25 Display Instructions

3-26 Clock Instructions

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

DISPLAY
MESSAGE

MSG
@MSG

046

Reads the specified sixteen words of extended ASCII and displays the mes-
sage on a Peripheral Device such as a Programming Console.

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

CALENDAR ADD
CADD

@CADD
730

Output
Required

CALENDAR
SUBTRACT

CSUB
@CSUB

731

Output
Required

N: Message
number
M: 1st message
word

MSG(046)

N

M

C: 1st calendar
word
T: 1st time word
R: 1st result word

CADD(730)

C

T

R

Minutes Seconds
Day Hour
Year Month

Minutes Seconds
Hours

Minutes Seconds
Day Hour
Year Month

C+1
C

C+2

T+1
T

R+1
R

R+2

Adds time to the calendar data in the specified words.

C: 1st calendar
word
T: 1st time word
R: 1st result word

CSUB(731)

C

T

R

Minutes Seconds
Day Hour
Year Month

Minutes Seconds
Hours

Minutes Seconds
Day Hour
Year Month

C+1
C

C+2

T+1
T

R+1
R

R+2

−

Subtracts time from the calendar data in the specified words.
134

Debugging Instructions Section 3-27
3-27 Debugging Instructions

HOURS TO
SECONDS

SEC
@SEC

065

Output
Required

SECONDS TO
HOURS

HMS
@HMS

066

Output
Required

CLOCK
ADJUSTMENT

DATE
@DATE

735

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

TRACE
MEMORY
SAMPLING

TRSM
045

When TRSM(045) is executed, the status of a preselected bit or word is sam-
pled and stored in Trace Memory. TRSM(045) can be used anywhere in the
program, any number of times.

Output
Not required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S: 1st source
word
D: 1st destination
word

SEC(065)

S
D

Minutes Seconds
Hours

Seconds

Converts time data in hours/minutes/seconds format to an equivalent time in
seconds only.

S: 1st source
word
D: 1st destination
word

HMS(066)

S

D

Minutes Seconds
Hours

Seconds

Converts seconds data to an equivalent time in hours/minutes/seconds
format.

S: 1st source
word

DATE(735)

S
CPU Unit

Internal clock

New
setting

Minutes Seconds
Day Hour
Year Month
00 Day of week

Changes the internal clock setting to the setting in the specified source words.

TRSM(045)
135

Failure Diagnosis Instructions Section 3-28
3-28 Failure Diagnosis Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

FAILURE ALARM
FAL

@FAL
006

Also generates (simulates) fatal system errors.

Output
Required

SEVERE
FAILURE ALARM

FALS
007

Also generates (simulates) fatal system errors.

Output
Required

FAILURE POINT
DETECTION

FPD
269

Output
Required

FAL(006)

N

M
N: FAL number
M: 1st message
word or error
code to generate
(#0000 to #FFFF)

Execution of
FAL(006)
generates a
non-fatal er
ror with FAL
number N.

FAL Error Flag ON
Corresponding Executed FAL Number
Flag ON
Error code written to A400
Error code and time written to Error
Log Area

ERR Indicator flashes

Message displayed
on Programming
Console

Generates or clears user-defined non-fatal errors. Non-fatal errors do not stop
PC operation.

FALS(007)

N
M

N: FALS number
M: 1st message
word or error
code to generate
(#0000 to #FFFF)

Execution of
FALS(007)
generates a
fatal error
with FALS
number N.

FALS Error Flag ON

Error code written to A400
Error code and time/date written
to Error Log Area

ERR Indicator lit

Message displayed
on Programming
Console

Generates user-defined fatal errors. Fatal errors stop PC operation.

C: Control word
T: Monitoring time
R: 1st register
word

FPD(269)

C
T
R

Time monitoring function:
Starts timing when execution condition A goes
ON. Generates a non-fatal error if output B
isn't turned ON within the monitoring time.

Execution
condition A

Error-processing
block (optional)

Next instruction block

Logic diagnosis block*

Logic diagnosis
execution condition C

Diagnostic output B

Logic diagnosis function
Determines which input in C prevents
output B from going ON.

T

R

Diagnoses a failure in an instruction block by monitoring the time between
execution of FPD(269) and execution of a diagnostic output and finding which
input is preventing an output from being turned ON.
136

Other Instructions Section 3-29
3-29 Other Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

SET CARRY
STC

@STC
040

Sets the Carry Flag (CY). Output
Required

CLEAR CARRY
CLC

@CLC
041

Turns OFF the Carry Flag (CY). Output
Required

SELECT EM
BANK

EMBC
@EMBC

281

Changes the current EM bank. Output
Required

EXTEND MAXI-
MUM CYCLE
TIME

WDT
@WDT

094

Extends the maximum cycle time, but only for the cycle in which this instruction
is executed.

Output
Required

SAVE CONDI-
TION FLAGS
(CS1-H, CJ1-H,
or CJ1M only)

CCS
@CCS

282

Saves the status of the condition flags. Output
Required

LOAD CONDI-
TION FLAGS
(CS1-H, CJ1-H,
or CJ1M only)

CCL
@CCL

283

Reads the status of the condition flags that was saved. Output
Required

CONVERT
ADDRESS FROM
CV
(CS1-H, CJ1-H,
or CJ1M only)

FRMCV
@FRMCV

284

Converts a CV-series PLC memory address to its equivalent CS-series PLC
memory address.

Output
Required

CONVERT
ADDRESS TO CV
(CS1-H, CJ1-H,
or CJ1M only)

TOCV
@TOCV

285

Converts a CS-series PLC memory address to its equivalent CV-series PLC
memory address.

Output
Required

STC(040)

CLC(041)

N: EM bank
number

EMBC(281)

N

T: Timer setting

WDT(094)

T

CCS(282)

CCL(283)

S: Word contain-
ing CV-series
memory address
D: Destination
Index Register

FRMCV(284)

S
D

S: Index Register
containing CS-
series memory
address
D: Destination
word

TOCV(285)

S
D

137

Block Programming Instructions Section 3-30
3-30 Block Programming Instructions

DISABLE
PERIPHERAL
SERVICING
(CS1-H or CJ1-H
only)

IOSP
@IOSP

287

Disables peripheral servicing during program execution in Parallel Processing
Mode or Peripheral Servicing Priority Mode.

Output
Required

ENABLE
PERIPHERAL
SERVICING
(CS1-H or CJ1-H
only)

IORS
288

Enables peripheral servicing that was disabled by IOSP(287) for program exe-
cution in Parallel Processing Mode or Peripheral Servicing Priority Mode.

Output
Not required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

BLOCK
PROGRAM
BEGIN

BPRG
096

Output
Required

BLOCK
PROGRAM END

BEND
801

Define a block programming area. For every BPRG(096) there must be a cor-
responding BEND(801).

Block program
Required

BLOCK
PROGRAM
PAUSE

BPPS
811

Block program
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

IOSP(287)

IORS(288)

N: Block program
number

BPRG(096)

N

Block program
Executed when the execu
tion condition is ON.

Define a block programming area. For every BPRG(096) there must be a
corresponding BEND(801).

N: Block program
number

N

BPPS
(811)

BPPS(811) executed
for block program n.

Block program n. Once
paused this block program
will not be executed even
if bit "a" is ON.

to

to

to

Pause and restart the specified block program from another block program.
138

Block Programming Instructions Section 3-30
BLOCK
PROGRAM
RESTART

BPRS
812

Block program
Required

CONDITIONAL
BLOCK EXIT

EXIT
806

Block program
Required

CONDITIONAL
BLOCK EXIT

EXIT
806

Block program
Required

CONDITIONAL
BLOCK EXIT
(NOT)

EXIT NOT
806

EXIT(806) without an operand bit exits the program if the execution condition
is OFF.

Block program
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

N: Block program
number

N

BPRS
(812)

BPRS(812) executed
for block program n.

Block program n. This block
program will now be executed
as long as bit "a" is ON.

to

to

to

Pause and restart the specified block program from another block program.

EXIT(806)

B: Bit operand

Execution condition

Execution
condition
OFF

Execution
condition
ON

"A" executed.

"B" executed.

"A" executed.

Block ended.

EXIT(806) without an operand bit exits the program if the execution condition
is ON.

EXIT(806) B

B: Bit operand
Operand bit
OFF
(ON for
EXIT NOT)

Operand bit
ON
(OFF for EXIT
NOT)

"A" executed.

"B" executed.

"A" executed.

Block ended.

EXIT(806) without an operand bit exits the program if the execution condition
is ON.
139

Block Programming Instructions Section 3-30
CONDITIONAL
BLOCK
BRANCHING

IF
802

IF (802)
B

B: Bit operand

Block program
Required

CONDITIONAL
BLOCK
BRANCHING

IF
802

Block program
Required

CONDITIONAL
BLOCK
BRANCHING
(NOT)

IF NOT
802

The instructions between IF(802) and ELSE(803) will be executed and if the
operand bit is ON, the instructions be ELSE(803) and IEND(804) will be exe-
cuted is the operand bit is OFF.

Block program
Required

CONDITIONAL
BLOCK
BRANCHING
(ELSE)

ELSE
803

--- If the ELSE(803) instruction is omitted and the operand bit is ON, the instruc-
tions between IF(802) and IEND(804) will be executed

Block program
Required

CONDITIONAL
BLOCK
BRANCHING
END

IEND
804

--- If the operand bit is OFF, only the instructions after IEND(804) will be exe-
cuted.

Block program
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Execution
condition Execution

condition ON?

"A" executed (be
tween IF and ELSE).

"B" executed
(after ELSE).

 If the execution condition is ON, the instructions between IF(802) and
ELSE(803) will be executed and if the execution condition is OFF, the
instructions between ELSE(803) and IEND(804) will be executed.

IF (802)
B

B: Bit operand

Operand bit
ON?

"A" executed (be
tween IF and ELSE).

"B" executed
(after ELSE).

IF R (IF NOT R)

If the operand bit is ON, the instructions between IF(802) and ELSE(803) will
be executed. If the operand bit is OFF, the instructions between ELSE(803)
and IEND(804) will be executed.

IF (802) NOT
B

B: Bit operand
140

Block Programming Instructions Section 3-30
ONE CYCLE AND
WAIT

WAIT
805

WAIT(805) Block program
Required

ONE CYCLE AND
WAIT

WAIT
805

If the operand bit is OFF (ON for WAIT NOT(805)), the rest of the instructions
in the block program will be skipped. In the next cycle, none of the block pro-
gram will be executed except for the execution condition for WAIT(805) or
WAIT(805) NOT. When the execution condition goes ON (OFF for WAIT(805)
NOT), the instruction from WAIT(805) or WAIT(805) NOT to the end of the
program will be executed.

Block program
Required

ONE CYCLE AND
WAIT (NOT)

WAIT NOT
805

If the operand bit is OFF (ON for WAIT NOT(805)), the rest of the instructions
in the block program will be skipped. In the next cycle, none of the block pro-
gram will be executed except for the execution condition for WAIT(805) or
WAIT(805) NOT. When the execution condition goes ON (OFF for WAIT(805)
NOT), the instruction from WAIT(805) or WAIT(805) NOT to the end of the
program will be executed.

Block program
Required

TIMER WAIT
TIMW

813
(BCD)

Block program
Required

TIMWX
816

(Binary)
(CS1-H, CJ1-H,

CJ1M only)

TIMWX(816)
N
SV

N: Timer number
SV: Set value

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

 If the execution condition is ON for WAIT(805), the rest of the instruction in
the block program will be skipped.

Execution
condition

Execution
condition
OFF

Execution
condition
OFF

Execution
condition
ON

"A"
executed.

"B" executed.

"C"
executed.

"C"
executed.

"C" executed.

Wait

WAIT(805) B

B: Bit operand

WAIT(805) NOT B

B: Bit operand

TIMW(813)
N
SV

N: Timer number
SV: Set value

"A"
executed.

Time elapsed.

"B" executed.

C

SV
preset.

"C" executed.

BEND

Delays execution of the rest of the block program until the specified time has
elapsed. Execution will be continued from the next instruction after TIMW(813)
when the timer times out.
141

Block Programming Instructions Section 3-30
COUNTER WAIT
CNTW

814
(BCD)

Block program
Required

CNTWX
817

(Binary)
(CS1-H, CJ1-H,

CJ1M only)

CNTWX(817)
N
SV

N: Counter
number
SV: Set value
I: Count input

HIGH-SPEED
TIMER WAIT

TMHW
815

(BCD)

Block program
Required

TMHWX
818

(Binary)
(CS1-H, CJ1-H,

CJ1M only

TMHWX(818)
N
SV

N: Timer number
SV: Set value

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

CNTW(814)
N
SV

N: Counter
number
SV: Set value
I: Count input

"B" executed.

"A"
executed.

SV
preset.

C

"C" executed.

Time elapsed.

"C"
executed.

"C"
executed.

Delays execution of the rest of the block program until the specified count
has been achieved. Execution will be continued from the next instruction
after CNTW(814) when the counter counts out.

TMHW(815)
N
SV

N: Timer number
SV: Set value

"A"
executed.

Time elapsed.

"B" executed.

C

"C" executed.

BEND

SV
preset.

Delays execution of the rest of the block program until the specified time has
elapsed. Execution will be continued from the next instruction after
TMHW(815) when the timer times out. SV = 0 to 99.99 s
142

Block Programming Instructions Section 3-30
LOOP
LOOP

809

--- Block program
Required

LEND
LEND

810

LEND(810) LEND(810) or LEND(810) NOT specifies the end of the loop. When
LEND(810) or LEND(810) NOT is reached, program execution will loop back
to the next previous LOOP(809) until the operand bit for LEND(810) or
LEND(810) NOT turns ON or OFF (respectively) or until the execution condi-
tion for LEND(810) turns ON.

Block program
Required

LEND
LEND

810

Block program
Required

LEND NOT
LEND NOT

810

LEND(810) or LEND(810) NOT specifies the end of the loop. When
LEND(810) or LEND(810) NOT is reached, program execution will loop back
to the next previous LOOP(809) until the operand bit for LEND(810) or
LEND(810) NOT turns ON or OFF (respectively) or until the execution condi-
tion for LEND(810) turns ON.

Block program
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Execution condition

Execution
condition
ON

Execution
condition
OFF

Execution
condition
OFF

Execution
condition
OFF

Loop repeated

LOOP(809) designates the beginning of the loop program.

LEND (810)
B

B: Bit operand

Operand
bit ON

Operand
bit OFF

Operand
bit OFF

Operand
bit OFF

Loop repeated

Note The status of the operand bit would be reversed for
LEND(810) NOT.

If the operand bit is OFF for LEND(810) (or ON for LEND(810) NOT),
execution of the loop is repeated starting with the next instruction after
LOOP(809). If the operand bit is ON for LEND(810) (or OFF for LEND(810)
NOT), the loop is ended and execution continues to the next instruction after
LEND(810) or LEND(810) NOT.

LEND(810) NOT

B: Bit operand
143

Text String Processing Instructions Section 3-31
3-31 Text String Processing Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

MOV STRING
MOV$

@MOV$
664

Output
Required

CONCATENATE
STRING

+$
@+$
656

Output
Required

GET STRING
LEFT

LEFT$
@LEFT$

652

Output
Required

GET STRING
RIGHT

RGHT$
@RGHT$

653

Output
Required

GET STRING
MIDDLE

MID$
@MID$

654

Output
Required

S: 1st source
word
D: 1st destination
word

MOV$(664)

S

D

Transfers a text string.

S1: Text string 1
S2: Text string 2
D: First
destination word

+$(656)

S1

S2

D

+

Links one text string to another text string.

S1: Text string
first word
S2: Number of
characters
D: First
destination word

LEFT$(652)

S1

S2

D → →

Fetches a designated number of characters from the left (beginning) of a text
string.

S1: Text string
first word
S2: Number of
characters
D: First
destination word

RGHT$(653)

S1

S2

D

Reads a designated number of characters from the right (end) of a text string.

00

S1: Text string
first word
S2: Number of
characters
S3: Beginning
position
D: First
destination word

MID$(654)

S1

S2

S3

D

→ →

Reads a designated number of characters from any position in the middle of a
text string.
144

Text String Processing Instructions Section 3-31
FIND IN STRING
FIND

@FIND$
660

Output
Required

STRING LENGTH
LEN$

@LEN$
650

Output
Required

REPLACE IN
STRING

RPLC$
@RPLC$

661

Output
Required

DELETE STRING
DEL$

@DEL$
658

Output
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

S1: Source text
string first word
S2: Found text
string first word
D: First
destination word

FIND$(660)

S1

S2

D

→ →→
Found data

Finds a designated text string from within a text string.

S: Text string first
word
D: 1st destination
word

LEN$(650)

S

D

1
3
5

2
4

→

Calculates the length of a text string.

S1: Text string
first word
S2: Replacement
text string first
word
S3: Number of
characters
S4: Beginning
position
D: First
destination word

RPLC$(661)

S1

S2

S3

S4

D

→ →

Replaces a text string with a designated text string from a designated position.

S1: Text string
first word
S2: Number of
characters
S3: Beginning
position
D: First
destination word

DEL$(658)

S1

S2

S3

D

→ →

Number of characters to be
deleted (designated by S2).

G

Deletes a designated text string from the middle of a text string.
145

Text String Processing Instructions Section 3-31
EXCHANGE
STRING

XCHG$
@XCHG$

665

Output
Required

CLEAR STRING
CLR$

@CLR$
666

Output
Required

INSERT INTO
STRING

INS$
@INS$

657

Output
Required

String
Comparison

LD, AND, OR +
=$, <>$, <$, <=$,

>$, >=$
670 (=$)

671 (<>$)
672 (<$)

673 (<=$)
674 (>$)

675 (>=$)

Sting comparison instructions (=$, <>$, <$, <=$, >$, >=$) compare two text
strings from the beginning, in terms of value of the ASCII codes. If the result of
the comparison is true, an ON execution condition is created for a LOAD, AND,
or OR.

LD: Not
required
AND, OR:
Required

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Ex1: 1st
exchange word 1
Ex2: 1st
exchange word 2

XCHG$(665)

Ex1

Ex2
Ex1 Ex1

Ex2 Ex2

Replaces a designated text string with another designated text string.

S: Text string first
word

CLR$(666)

S S SA B
C D

NUL NUL

Clears an entire te xt str ing with NUL (00 hex).

S1: Base text
string first word
S2: Inserted text
string first word
S3: Beginning
position
D: First
destination word

INS$(657)

S1

S2

S3

D

→

→

→

Inserted
characters

NUL

Deletes a designated text string from the middle of a text string.

LD

AND

OR

S1: Text string 1
S2: Text string 2

Symbol

S1

S2

Symbol

S1

S2

Symbol

S1

S2
146

Task Control Instructions Section 3-32
3-32 Task Control Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

TASK ON
TKON

@TKON
820

Output
Required

TASK OFF
TKOF

@TKOF
821

Output
Required

N: Task number

TKON(820)

N The specified task's task number
is higher than the local task's task
number (m<n).

The specified task's task number
is lower than the local task's task
number (m>n).

Task m

Task n

Becomes
execut-
able in
that cycle.

Task m

Task n

Be
comes
execut-
able in
the next
cycle.

Makes the specified task executable.

N: Task number

TKOF(821)

N The specified task's task num
ber is higher than the local
task's task number (m<n).

The specified task's task num
ber is lower than the local
task's task number (m>n).

Task m

Task n

In stand-
by status
that
cycle.

Task m

Task n

In stand-
by status
the next
cycle.

Puts the specified task into standby status.
147

Task Control Instructions Section 3-32
148

SECTION 4
Tasks

This section describes the operation of tasks.

4-1 Task Features. 150

4-1-1 Overview. 150

4-1-2 Tasks and Programs . 151

4-1-3 Basic CPU Unit Operation . 152

4-1-4 Types of Tasks . 154

4-1-5 Task Execution Conditions and Settings . 156

4-1-6 Cyclic Task Status. 157

4-1-7 Status Transitions . 157

4-2 Using Tasks . 158

4-2-1 TASK ON and TASK OFF . 158

4-2-2 Task Instruction Limitations . 162

4-2-3 Flags Related to Tasks . 163

4-2-4 Designing Tasks . 166

4-2-5 Global Subroutines . 167

4-3 Interrupt Tasks. 168

4-3-1 Types of Interrupt Tasks . 168

4-3-2 Interrupt Task Priority. 175

4-3-3 Interrupt Task Flags and Words . 176

4-3-4 Application Precautions . 177

4-4 Programming Device Operations for Tasks . 180

4-4-1 Using Multiple Cyclic Tasks. 180

4-4-2 Programming Device Operations . 180
149

Task Features Section 4-1
4-1 Task Features

4-1-1 Overview
CS/CJ-series control operations can be divided by functions, controlled
devices, processes, developers, or any other criteria and each operation can
be programmed in a separate unit called a “task.” Using tasks provides the fol-
lowing advantages:

1,2,3... 1. Programs can be developed simultaneously by several people.

Individually designed program parts can be assembled with very little effort
into a single user program.

2. Programs can be standardized in modules.

More specifically, the following Programming Device functions will be com-
bined to develop programs that are standalone standard modules rather
than programs designed for specific systems (machines, devices). This
means that programs developed separately by several people can be
readily combine.

• Programming using symbols

• Global and local designation of symbols

• Automatic allocation of local symbols to addresses

3. Improved overall response.

Overall response is improved because the system is divided into an overall
control program as well as individual control programs, and only specific
programs will be executed as needed.

4. Easy revision and debugging.

• Debugging is much more efficient because tasks can be developed
separately by several people, and then revised and debugged by indi-
vidual task.

• Maintenance is simple because only the task that needs revising will
be changed in order to make specification or other changes.

• Debugging is more efficient because it is easy to determine whether
an address is specific or global and addresses between programs only
need to be checked once during debugging because symbols are des-
ignated globally or locally and local symbols are allocated automatical-
ly to addresses through Programming Devices.

5. Easy to switch programs.

A task control instruction in the program can be used to execute product-
specific tasks (programs) when changing operation is necessary.
150

Task Features Section 4-1
6. Easily understood user programs.

Programs are structured in blocks that make the programs much simpler
to understand for sections that would conventionally be handled with in-
structions like jump.

4-1-2 Tasks and Programs
• Up to 288 programs (tasks) can be controlled. Individual programs are

allocated 1:1 to tasks. Tasks are broadly grouped into the following types:

• Cyclic tasks

• Interrupt tasks

Note 1. Up to 32 cyclic tasks and 256 interrupt tasks for a maximum total of 288
tasks can be created. Each task has its own unique number ranging from
0 to 31 for cyclic tasks and 0 to 255 for interrupt tasks.

2. With the CS1-H, CJ1-H, or CJ1M CPU Units, interrupt task (interrupt task
numbers 0 to 255) can be executed as cyclic tasks by starting them with
TKON. These are called “extra cyclic tasks.” If extra cyclic tasks are used,
then the total number of cyclic tasks that can be used is 288.

3. CJ1 CPU Units do not currently support I/O interrupt tasks and external in-
terrupt tasks. The maximum number of tasks for a CJ1 CPU Unit is thus
35, i.e., 32 cyclic tasks and 3 interrupt tasks. The total number of programs
that can be created and managed is also 35.

Each program allocated to a task must end with an END(001) instruction. I/O
refreshing will be executed only after all task programs in a cycle have been
executed.

Task C

Start task A

Start task B

Task A

Task B

(Program A)

(Program B)
151

Task Features Section 4-1
4-1-3 Basic CPU Unit Operation
The CPU Unit will execute cyclic tasks (including extra cyclic tasks, CS1-H,
CJ1-H, or CJ1M CPU Unit only) starting at the lowest number. It will also inter-
rupt cyclic task execution to execute an interrupt task if an interrupt occurs.

Note All Condition Flags (ER, CY, Equals, AER, etc.) and instruction conditions
(interlock ON, etc.) will be cleared at the beginning of a task. Therefore Condi-
tion Flags cannot be read nor can INTERLOCK/INTERLOCK CLEAR (IL/ILC)
instructions, JUMP/JUMP END (JMP/JME) instructions, or SUBROUTINE
CALL/SUBROUTINE ENTRY (SBS/SBN) instructions be split between two
tasks.

With a CS1-H, CJ1-H, or CJ1M CPU Unit, interrupt task can be executed as
cyclic tasks by starting them with TKON. These are called “extra cyclic tasks.”
Extra cyclic tasks (interrupt task numbers 0 to 255) are executed starting at
the lowest task number after execution of the normal cyclic task (celiac task
numbers 0 to 31) has been completed.

Cyclic task 0

Executed in order starting
at the lowest number.

Cyclic task 1

Cyclic task n

I/O refresh

Peripheral processing

*2: END for the final task. Clears ER, Equals,
and N Flags, and then refreshes I/O.

*1: END other than that for the final
task. Clears ER, Equals, and N Flags.

Interrupt
occurs.

Interrupt task 5
152

Task Features Section 4-1
END

END

END

END

Cyclic task 0

Cyclic task n

Extra cyclic task 0

Extra cyclic task m

Normal cyclic tasks

Extra cyclic tasks

I/O refresh

Peripheral
processing

Executed in order starting at
lowest number of the cyclic tasks.

Executed in order starting at lowest
number of the extra cyclic tasks.
153

Task Features Section 4-1
4-1-4 Types of Tasks
Tasks are broadly classified as either cyclic tasks or interrupt tasks. Interrupt
tasks are further divided into power OFF, scheduled, I/O (CS Series only), and
external interrupt tasks (CS Series only). Interrupt tasks can also be executed
as extra cyclic tasks.

Note With the CS1-H, CJ1-H, or CJ1M Units, interrupt task can be executed as
cyclic tasks by starting them with TKON. These are called “extra cyclic tasks.”

Cyclic Tasks
A cyclic task that is READY will be executed once each cycle (from the top of
the program until the END(001) instruction) in numerical order starting at the
task with the lowest number. The maximum number of cyclic tasks is 32.
(Cyclic task numbers: 00 to 31).

Note With the CS1-H, CJ1-H, or CJ1M CPU Units, interrupt task (interrupt task
numbers 0 to 255) can be executed as cyclic tasks just like normal cyclic
tasks (task numbers 0 to 31). If extra cyclic tasks are used, then the total num-
ber of cyclic tasks that can be used is 288.

Interrupt Tasks
An interrupt task will be executed if an interrupt occurs even if a cyclic task
(including extra cyclic tasks) is currently being executed. The interrupt task
will be executed using any time in the cycle, including during user program
execution, I/O refreshing, or peripheral servicing, when the execution condi-
tion for the interrupt is met.

With the CS1-H, CJ1-H, or CJ1M CPU Units, interrupt task can be executed
as cyclic tasks.

The built-in interrupt inputs and high-speed counter inputs on a CJ1M CPU
Unit can be used to activate interrupt tasks. Refer to the CJ Series Built-in I/O
Operation Manual for details.

Power OFF Interrupt Task The power OFF interrupt task will be executed if CPU Unit power is shut OFF.
Only one power OFF interrupt task can be programmed (Interrupt task num-
ber: 1).

Note The power OFF interrupt task must execute before the following time elapses
or the task will be forced to quit.

10 ms – (Power OFF detection delay time)

The power OFF detection delay time is set in the PLC Setup.

Scheduled Interrupt Tasks A scheduled interrupt task will be executed at a fixed interval based on the
internal timer of the CPU Unit. The maximum number of scheduled interrupt
tasks is 2 (Interrupt task numbers: 2 and 3).

Note The SET INTERRUPT MASK (MSKS(690)) instruction is used to set the inter-
rupt for a scheduled interrupt task. Interrupt times can be set in 10-ms or 1.0-
ms increments in the PLC Setup.

I/O Interrupt Tasks An I/O interrupt task will be executed if an Interrupt Input Unit input turns ON.
The maximum number of I/O interrupt tasks is 32 (Interrupt task numbers: 100
to 131). The Interrupt Input Unit must be mounted to the CPU Rack. For CJ1-
H CPU Units, the Unit must be connected as one of the five Units next to the
CPU Unit (slots 0 to 4). For CJ1M CPU Units, the Unit must be connected as
one of the three Units next to the CPU Unit (slots 0 to 2). I/O Interrupt Units
154

Task Features Section 4-1
mounted elsewhere cannot be used to request execution of I/O interrupt
tasks.

I/O interrupts are not supported by CJ1 CPU Units.

External Interrupt Tasks An external interrupt task will be executed when requested by an Special I/O
Unit, CPU Bus Unit, or Inner Board (CS Series only) user program. Special
I/O Units and CPU Bus Units, however, must be mounted to the CPU Rack.
The Special I/O Unit or CPU Bus Unit must be mounted to the CPU Rack. For
CJ1-H CPU Units, the Unit must be connected as one of the five Units next to
the CPU Unit (slots 0 to 4). For CJ1M CPU Units, the Unit must be connected
as one of the three Units next to the CPU Unit (slots 0 to 2). Units mounted
elsewhere cannot be used to generate external interrupts.

The maximum number of external interrupt tasks is 256 (Interrupt task num-
bers: 0 to 255). If an external interrupt task has the same number as a power
OFF, scheduled, or I/O interrupt task, the interrupt task will be executed for
either condition (the two conditions will operate with OR logic) but basically
task numbers should not be duplicated.

I/O interrupts are not supported by CJ1 CPU Units.

Extra Cyclic Tasks (CS1-H,
CJ1-H, or CJ1M CPU Units
Only)

An interrupt tasks can be executed every cycle, just like the normal cyclic
tasks. Extra cyclic tasks (interrupt task numbers 0 to 255) are executed start-
ing at the lowest task number after execution of the normal cyclic task (cyclic
task numbers 0 to 31) has been completed. The maximum number of extra
cyclic tasks is 256 (Interrupt task numbers: 0 to 255). Cycle interrupt tasks,
however, are different from normal cyclic tasks in that they are started with the
TKON(820)instruction. Also, the TKON(820)and TKOF instructions cannot be
used in extra cyclic tasks, meaning that normal cyclic tasks and other extra
cyclic tasks cannot be controlled from within an extra cyclic task.

If an extra cyclic task has the same number as a power OFF, scheduled, or I/O
interrupt task, the interrupt task will be executed for either condition (the two
conditions will operate with OR logic). Do not use interrupt tasks both as nor-
mal interrupt tasks and as extra cyclic tasks.

Note 1. The power OFF interrupt task in 1) above has priority and will be executed
when power turns OFF even if another interrupt task is being executed.

2. If another interrupt task is being executed when a scheduled, I/O, or exter-
nal interrupt occurs, then these interrupt tasks will not be executed until the
interrupt task that is currently being executed has been completed. If mul-
tiple interrupts occur simultaneously, then interrupt tasks will be executed
sequentially starting at the lowest interrupt task number.

3. The differences between normal cyclic tasks and extra cyclic tasks are list-
ed in the following table.

Item Extra cyclic tasks Normal cyclic tasks

Activating at startup Setting is not possible. Set from CX-Programmer

Using TKON/TKOF
instructions inside task

Possible. Not possible.

Task Flags Not supported. Supported.

Initial Task Execution
Flag (A20015) and
Task Start Flag
(A20014)

Not supported. Supported.

Index (IR) and data
(DR) register values

Not defined when task is
started (same as normal
interrupt tasks). Values
set in the previous cycle
cannot be read.

Undefined at the beginning
of operation. Values set in
the previous cycle can be
read.
155

Task Features Section 4-1
4. The CJ1 CPU Units do not support I/O interrupt and external interrupt
tasks.

4-1-5 Task Execution Conditions and Settings
The following table describes task execution conditions, related settings, and
status.

Note 1. The Interrupt Input Unit must be mounted to the CPU Rack. For CJ1-H
CPU Units, the Unit must be connected as one of the five Units next to the
CPU Unit (slots 0 to 4). For CJ1M CPU Units, the Unit must be connected
as one of the three Units next to the CPU Unit (slots 0 to 2). I/O Interrupt
Units mounted elsewhere cannot be used to request execution of I/O inter-
rupt tasks

2. The Special I/O Unit or CPU Bus Unit must be mounted to the CPU Rack.
For CJ1-H CPU Units, the Unit must be connected as one of the five Units
next to the CPU Unit (slots 0 to 4). For CJ1M CPU Units, the Unit must be
connected as one of the three Units next to the CPU Unit (slots 0 to 2).
Units mounted elsewhere cannot be used to generate external interrupts.

3. The number of cyclic tasks and interrupt tasks are limited when the mem-
ory clear operation is performed with a Programming Console.

• Only cyclic task 0 can be created.
Cyclic tasks 1 to 31 cannot be created with a Programming Console,
but these tasks can be edited if they were already created with CX-
Programmer.

• Only interrupt tasks 1, 2, 3, and 100 through 131 (CS Series only) can
be created.
Interrupt tasks 0, 4 through 99, and 132 through 255 cannot be created
with a Programming Console (except that 140 through 143 can be cre-

Task No. Execution condition Related Setting

Cyclic tasks 0 to 31 Executed once each cycle if
READY (set to start initially or
started with the
TKON(820)instruction) when the
right to execute is obtained.

None

Interrupt
tasks

Power OFF interrupt task Interrupt
task 1

Executes when CPU Unit power
shuts OFF.

• Power OFF interrupt enabled
in PLC Setup.

Scheduled interrupt tasks
0 and 1

Interrupt
tasks 2 and
3

Executes once every time the
preset period elapses according
to the internal timer of CPU Unit.

• The scheduled interrupt time
is set (0 to 9999) through the
SET INTERRUPT MASK
instruction (MSKS).

• Scheduled interrupt unit
(10 ms or 1.0 ms) is set in
PLC Setup.

I/O interrupt tasks
00 to 31

Interrupt
tasks 100 to
131

Executes when an input on an
Interrupt Input Unit on the CPU
Rack turns ON.

• Masks for designated inputs
are canceled through the
SET INTERRUPT MASK
instruction (MSKS).

External interrupt tasks
0 to 255

Interrupt
tasks 0 to
255

Executes when requested by a
user program in a Special I/O
Unit or CPU Bus Unit on the
CPU Rack or by a user program
in an Inner Board (CS Series
only).

None (always enabled)

Extra cyclic tasks (CS1-H, CJ1-H, or
CJ1M CPU Units only)

Interrupt
tasks 0 to
255

Executed once each cycle if
READY (started with the
TKON(820)instruction) when the
right to execute is obtained.

None (always enabled)
156

Task Features Section 4-1
ated for CJ1M CPU Units), but these tasks can be edited if they were
already created with CX-Programmer.

4-1-6 Cyclic Task Status
This section describes cyclic task status, including extra cyclic tasks (sup-
ported by CS1-H, CJ1-H, or CJ1M CPU Units only).

Cyclic tasks always have one of four statuses: Disabled, READY, RUN (exe-
cutable), and standby (WAIT).

Disabled Status (INI)
A task with Disabled status is not executed. All cyclic tasks have Disabled sta-
tus in PROGRAM mode. Any cycle task that shifted from this to another status
cannot return to this status without returning to PROGRAM mode.

READY Status
A task attribute can be set to control when the task will go to READY status.
The attribute can be set to either activate the task using the TASK ON instruc-
tion or when RUN operation is started.

Instruction-activated
Tasks

A TASK ON (TKON(820)) instruction is used to switch an instruction-activated
cyclic task from Disabled status or Standby status to READY status.

Operation-activated Tasks An operation-activated cyclic task will switch from Disabled status to READY
status when the operating mode is changed from PROGRAM to RUN or
MONITOR mode. This applies only to normal cyclic tasks.

Note A Programming Device can be used to set one or more tasks to go to READY
status when operation is started for task numbers 0 through 31. The setting,
however, is not possible with extra cyclic tasks.

RUN Status
A cyclic task that is READY will switch to RUN status and be executed when
the task obtains the right to execute.

Standby Status
A TASK OFF (TKOF(821)) instruction can be used to change a cyclic task
from Disabled status to Standby status.

4-1-7 Status Transitions

Note 1. A task in RUN status will be put into Standby status by the TKOF(821) in-
struction even when the TKOF(821) instruction is executed within that task.

INI (Disabled) status

Activated at the start of
operation (See note 2) or the
TKON(820) instruction

READY status

Right to execute obtained.

RUN status

Executed

TKOF(821) instruction (See note 1.)TKON(820) instruction

Standby status
157

Using Tasks Section 4-2
2. Activation at the start of operation is possible for normal cyclic tasks only.
It is not possible for extra cyclic tasks.

Standby status functions exactly the same way as a jump (JMP-JME). Output
status for the Standby task will be maintained.

Instructions will not be executed in Standby status, so instruction execution
time will not be increased. Programming that does not need to be executed all
the time can be made into tasks and assigned Standby status to reduce cycle
time.

Note Standby status simply means that a task will be skipped during task execu-
tion. Changing to Standby status will not end the program.

4-2 Using Tasks

4-2-1 TASK ON and TASK OFF
The TASK ON (TKON(820)) and TASK OFF (TKOF(821)) instructions switch a
cyclic task (including extra cyclic tasks) between READY and Standby status
from a program.

Note Extra cyclic tasks are supported only by CS1-H, CJ1-H, or CJ1M CPU Units.

Standby status Jump

Conventional program

Executes under
set conditions All instructions will

be executed un-
less jumps or other
functions are used.

Task
Reduced cycle time

Executes under
set conditions

N: Task No. A task will go to READY status when the
execution condition is ON, and the corre-
sponding Task Flag will turn ON.

A task will go to Standby status when
the execution condition is ON, and the
corresponding Task Flag will turn OFF.

N: Task No.

Note: Task Flags do not work for extra cyclic tasks.
158

Using Tasks Section 4-2
The TASK ON and TASK OFF instructions can be used to change any cyclic
task between READY or Standby status at any time. A cyclic task that is in
READY status will maintain that status in subsequent cycles, and a cyclic task
that is in Standby status will maintain that status in subsequent cycles.

The TASK ON and TASK OFF instructions can be used only with cyclic tasks
and not with interrupt tasks.

Note At least one cyclic task must be in READY status in each cycle. If there is not
cyclic task in READY status, the Task Error Flag (A29512) will turn ON, and
the CPU Unit will stop running.

Example: Cyclic Task

Cyclic task 0
(READY status
at the start of
operation)

Cyclic task 1

Cyclic task 2

Cyclic task 3

Cyclic task 1

Cyclic task 2

Cyclic task 3

Cyclic task 0

Cyclic task 1

Cyclic task 2

Cyclic task 3

Cyclic task 0

Cyclic task 1

Cyclic task 2

Cyclic task 3

Cyclic task 0

1) Task 0 will be in
READY status at
the start of opera-
tion.

Other tasks will re-
main in Disabled
status.

2)Task 1 will go to
READY status if A is
ON, and tasks 2 and 3
will remain on Disabled
status.

3) Task 0 will go to
Standby status if D
is ON.

Other tasks will remain
in their current status.

READY status

Standby status/Disabled status
159

Using Tasks Section 4-2
Tasks and the Execution Cycle
A cyclic task (including an extra cyclic task) that is in READY status will main-
tain that status in subsequent cycles.

A cyclic task that is in Standby status will maintain that status in subsequent
cycles. The task will have to be activated using the TKON(820) instruction in
order to switch from Standby to READY status.

If a TKOF(821) instruction is executed for the task it is in, the task will stop
being executed where the instruction is executed, and the task will shift to
Standby status.

Cyclic Task Numbers and the Execution Cycle (Including Extra Cyclic Tasks)
If task m turns ON task n and m > n, task n will go to READY status the next
cycle.

Example:If task 5 turns ON task 2, task 2 will go to READY status the next
cycle.

If task m turns ON task n and m < n, task n will go to READY status the same
cycle.

Example:If task 2 turns ON task 5, task 5 will go to READY status in the same
cycle.

Cyclic task 1

Cyclic task 2

READY sta-
tus at the
start of op-
eration

Cyclic task 1

Cyclic task 2

READY status

READY
status

READY statusTKON(820)

Cyclic task 1

Cyclic task 2

Cyclic task 1Standby status

RUN status

Standby status

Cyclic task 2 RUN status

TKOF(821) TKON (820)

Task 2

Task execution will
stop here and the task
will shift to Standby
status.
160

Using Tasks Section 4-2
If task m places task n in Standby status and m > n, will go to Standby status
the next cycle.

Example: If task 5 places task 2 in Standby status, task 2 will go to Standby
status the next cycle.

If task m places task n in Standby status and m < n, task n will go to Standby
status in the same cycle.

Example: If task 2 places task 5 in Standby status, task 5 will go to Standby
status in the same cycle.

Relationship of Tasks to I/O Memory
There are two different ways to use Index Registers (IR) and Data Registers
(DR): 1) Independently by task or 2) Shared by all task (supported by CS1-H,
CJ1-H, or CJ1M CPU Units only).

With independent registers, IR0 used by cyclic task 1 for example is different
from IR0 used by cyclic task 2. With shared registers, IR0 used by cyclic task
1 for example is the same as IR0 used by cyclic task 2.

The setting that determines if registers are independent or shared is made
from the CX-Programmer.

• Other words and bits in I/O Memory are shared by all tasks. CIO 001000
for example is the same bit for both cyclic task 1 and cyclic task 2. There-
fore, be very careful in programming any time I/O memory areas other
than the IR and DR Areas are used because values changed with one
task will be used by other tasks.

Note 1. The current EM bank is also shared by tasks. Therefore if the current EM
bank number is changed with cyclic task 1 for example, the new current EM
bank number will be valid for cyclic task 2 as well.

2. IR and DR values are not set when interrupt tasks (including extra cyclic
tasks) are started. If IR and DR are used in an interrupt task, these values
must be set by the MOVR/MOVRW (MOVE TO REGISTER and MOVE
TIMER/COUNTER PV TO REGISTER) instructions within the interrupt
task. After the interrupt task has been executed, IR and DR will return to
their values prior to the interrupt automatically.

Relationship of Tasks to
Timer Operation

Timer present values for TIM, TIMX, TIMH, TIMHX, TMHH, TMHHX, TIMW,
TIMWX, TMHW, and TMHWX programmed for timer numbers 0000 to 2047
will be updated even if the task is switched or if the task containing the timer is
changed to Standby status or back to READY status.

If the task containing TIM goes to Standby status and is the returned to
READY status, the Completion Flag will be turned ON if the TIM instruction is
executed when the present value is 0. (Completion Flags for timers are
updated only when the instruction is executed.) If the TIM instruction is exe-
cuted when the present value is not yet 0, the present value will continue to be
updated just as it was while the task was in READY status.

• The present values for timers programmed with timer numbers 2048 to
4098 will be maintained when the task is in Standby status.

I/O memory Relationship to tasks

CIO, Auxiliary, Data Memory and all other mem-
ory areas except the IR and DR Areas. (See
note 1.)

Shared with other tasks.

Index registers (IR) and data registers (DR)
(See note 2.)

Used separately for each task.
161

Using Tasks Section 4-2
Relationship of Tasks to
Condition Flags

All Condition Flags will be cleared before execution of each task. Therefore
Condition Flag status at the end of task 1 cannot be read in task 2. With a
CS1-H, CJ1-H, or CJ1M CPU Unit, however, CCS(282) and CCL(283) can be
used to read Condition Flag status from another part of the program, e.g.,
from another task.

Note When the status of Condition Flags is monitored from a Programming Con-
sole, the Programming Console will show the flags’ status at the end of the
cycle, i.e., their status at the end of the last task in the cycle.

4-2-2 Task Instruction Limitations
Instructions Required in the Same Task

The following instructions must be placed within the same task. Any attempt
to split instructions between two tasks will cause the ER Flag to turn ON and
the instructions will not be executed.

Instructions Not Allowed in Interrupt Tasks
The following instructions cannot be placed in interrupt tasks. Any attempt to
execute one of these instructions in an interrupt task will cause the ER Flag to
turn ON and the instruction will not be executed.The following instructions can
be used if an interrupt task is being used as an extra task.

The operation of the following instructions is unpredictable in an interrupt task:
TIMER: TIM and TIMX((550), HIGH-SPEED TIMER: TIMH(015) and
TIMHX(551), ONE-MS TIMER: TMHH(540) and TMHHX(552), ACCUMULA-
TIVE TIMER: TTIM(087) and TTIMX(555), MULTIPLE OUTPUT TIMER:
MTIM(543) and MTIMX(554), LONG TIMER: TIML(542) and TIMLX(553),
TIMER WAIT: TIMW(813) and TIMWX(816), HIGH-SPEED TIMER WAIT:
TMHW(815) and TMHWX(817), PID CONTROL: PID(190), FAILURE POINT
DETECTION: FPD(269), and CHANGE SERIAL PORT SETUP: STUP(237).

The following instructions cannot be used in the power OFF interrupt task
(they will not be executed even if they are used and the Error Flag will not turn
ON):
READ DATA FILE: FREAD(700), WRITE DATA FILE: FWRIT(701), NET-

Mnemonic Instruction

JMP/JME JUMP/JUMP END

CJP/JME CONDITIONAL JUMP/JUMP END

CJPN/JME CONDITIONAL JUMP NOT/CONDITIONAL JUMP END

JMP0/JME0 MULTIPLE JUMP/JUMP END

FOR/NEXT FOR/NEXT

IL/ILC INTERLOCK/INTERLOCK CLEAR

SBS/SBN/RET SUBROUTINE CALL/SUBROUTINE ENTRY/SUBROUTINE
RETURN

MCRO/SBN/RET MACRO/SUBROUTINE ENTRY/SUBROUTINE RETURN

BPRG/BEND BLOCK PROGRAM BEGIN/BLOCK PROGRAM END

STEP S/STEP STEP DEFINE

Mnemonic Instruction

TKON(820) TASK ON

TKOF(821) TASK OFF

STEP STEP DEFINE

SNXT STEP NEXT

STUP CHANGE SERIAL PORT SETUP

DI DISABLE INTERRUPT

EI ENABLE INTERRUPT
162

Using Tasks Section 4-2
WORK SEND: SEND(090), NETWORK RECEIVE: RECV(098), DELIVER
COMMAND: CMND(490), PROTOCOL MACRO: PMCR(260).

4-2-3 Flags Related to Tasks

Flags Related to Cyclic Tasks
The following flag work only for normal cyclic tasks. They do not work for extra
cyclic tasks.

Task Flags
(TK00 to TK31)

A Task Flag is turned ON when a cyclic task in READY status and is turned
OFF when the task is in Disabled (INI) or in Standby (WAIT) status. Task num-
bers 00 to 31 correspond to Task Flags TK00 to TK31.

Note Task Flags are used only with cyclic tasks and not with interrupt tasks. With
an interrupt task, A44115 will turn ON if an interrupt task executes after the
start of operation, and the number of the interrupt task that required for maxi-
mum processing time will be stored in two-digit hexadecimal in A44100 to
A44107.

Initial Task Execution Flag
(A20015)

The Initial Task Execution Flag will turn ON when cyclic tasks shift from Dis-
abled (INI) to READY status, the tasks obtain the right to execute, and the
tasks are executed the first time. It will turn OFF when the first execution of the
tasks has been completed.

The Initial Task Execution Flag tells whether or not the cyclic tasks are being
executed for the first time. This flag can thus be used to perform initialization
processing within the tasks.

Note Even though a Standby cyclic task is shifted back to READY status through
the TKON(820) instruction, this is not considered an initial execution and the
Initial Task Execution Flag (20015) will not turn ON. The Initial Task Execution
Flag (20015) will also not turn ON if a cyclic task is shifted from Disabled to
RUN status or if it is put in Standby status by another task through the
TKOF(821) instruction before the right to execute actually is obtained.

Task 3 Cycle Cycle Cycle
Disabled READY StandbyREADY

Task Flag for task 3

Task n

Ready

Disabled

Initial Task
Execution Flag

Ready

Disabled

Initializing
processing

Initial Task Execution Flag
163

Using Tasks Section 4-2
Task Start Flag (A20014,
CS1-H, CJ1-H, or CJ1M
CPU Units only)

The Task Start Flag can be used to perform initialization processing each time
the task cycle is started. The Task Start Flag turns OF whenever cycle task
status changes from Disabled (INI) or Standby (WAIT) status to READY status
(whereas the Initial Task Execution Flag turns ON only when status changes
from Disabled (INI) to READY).

The Task Start Flag can be used to perform initialization processing whenever
a task goes from Standby to RUN status, i.e., when a task on Standby is
enabled using the TRON(820) instruction.

Flags Related to All Tasks

Task Error Flag (A29512) The Task Error Flag will turn ON if one of the following task errors occurs.

• No cyclic tasks (including extra cyclic tasks) are READY during a cycle.

• The program allocated to a cyclic task (including extra cyclic tasks) does
not exist. (This situation will not occur when using the CX-Programmer or
a Programming Console.)

• No program is allocated to an activated interrupt task.

Task Number when
Program Stopped (A294)

The type of task and the current task number when a task stops execution
due to a program error will be stored as follows:

This information makes it easier to determine where the fatal error occurred,
and it will be cleared when the fatal error is cleared. The program address
where task operation stopped is stored in A298 (rightmost bits of the program
address) and in A299 (leftmost bits of the program address).

Examples of Tasks
An overall control task that is set to go to READY status at the start of opera-
tion is generally used to control READY/Standby status for all other cyclic
tasks (including extra cyclic tasks). Of course, any cyclic task can control the
READY/Standby status of any other cyclic task as required by the application.

Task n

Ready

Disabled

Task Start Flag

Ready

Disabled

A20014

Initialization
processing

Task Start Flag

Type A294

Cyclic task 0000 to 001F Hex (correspond to task numbers 0 to 31)

Interrupt task 8000 to 80FF Hex (correspond to interrupt task numbers 0 to 255)
164

Using Tasks Section 4-2
Combinations of the above classifications are also possible, e.g., classifica-
tion by function and process.

Overall control task

From Program Mode to Operating or Monitor Mode.

Cyclic task 0 with the startup at
the start of operation attribute
(overall control task)

Cyclic task 1 Cyclic task 2 Cyclic task 3

Tasks Separated by Function

Overall control task

Conveyor task

Error monitoring
task

MMI task

Communications
task

Analog processing
task

Tasks Separated by Controlled Section

Overall control task

A-section control
task

B-section control
task

C-section control
task

Tasks Separated by Product

Overall control task

Tasks Separated by Developer

Developer A task

Overall control
task

Product A task

Tasks Separated by Process

Machining task

Assembly task

Conveyor task

Product B task

Product C task

Developer B task

Developer C task
165

Using Tasks Section 4-2
4-2-4 Designing Tasks
We recommend the following guidelines for designing tasks.

1,2,3... 1. Use the following standards to study separating tasks.

a) Summarize specific conditions for execution and non-execution.

b) Summarize the presence or absence of external I/O.

c) Summarize functions.

Keep data exchanged between tasks for sequence control, analog
control, man-machine interfacing, error processing and other pro-
cesses to an absolute minimum in order to maintain a high degree
of autonomy.

d) Summarize execution in order of priority.

Separate processing into cyclic and interrupt tasks.

2. Be sure to break down and design programs in a manner that will ensure
autonomy and keep the amount of data exchanged between tasks (pro-
grams) to an absolute minimum.

3. Generally, use an overall control task to control the READY/Standby status
of the other tasks.

4. Allocate the lowest numbers to tasks with the highest priority.
Example: Allocate a lower number to the control task than to processing
tasks.

5. Allocate lower numbers to high-priority interrupt tasks.

6. A task in READY status will be executed in subsequent cycles as long as
the task itself or another task does not shift it to Standby status. Be sure to
insert a TKOF(821) (TASK OFF) instruction for other tasks if processing is
to be branched between tasks.

7. Use the Initial Task Execution Flag (A20015) or the Task Start Flag
(A20014) in the execution condition to execution instructions to initialize
tasks. The Initial Task Execution Flag will be ON during the first execution
of each task. The Task Start Flag each time a task enters READY status.

Input
proces-
sing

Overall
control
(may in-
clude error
processing
in some
cases)

Breakdown by function

Error processing

Sequence control

Analog control

Man-machine interfacing

Interrupt

Output
processing

Breakdown by execution and non-execution conditions

O
rd

er
 p

rio
rit

y

E
xt

er
na

l I
/O

E
xt

er
na

l o
ut

pu
ts

Minimize data
exchange
166

Using Tasks Section 4-2
8. Assign I/O memory into memory shared by tasks and memory used only
for individual tasks, and then group I/O memory used only for individual
tasks by task.

Relationship of Tasks to
Block Programs

Up to 128 block programs can be created in the tasks. This is the total number
for all tasks. The execution of each entire block program is controlled from the
ladder diagram, but the instructions within the block program are written using
mnemonics. In other words, a block program is formed from a combination of
a ladder instruction and mnemonic code.

Using a block program makes it easier to write logic flow, such as conditional
branching and process stepping, which can be hard to write using ladder dia-
grams. Block programs are located at the bottom of the program hierarchy,
and the larger program units represented by the task can be split into small
program units as block programs that operate with the same execution condi-
tion (ON condition).

4-2-5 Global Subroutines
Global subroutine can be called from more than one task. They are supported
only by CS1-H, CJ1-H, or CJ1M CPU Units.

With the CS1 or CJ1 CPU Units, a subroutine in one task cannot be called
from other tasks. With the CS1-H, CJ1-H, or CJ1M CPU Units, however, glo-
bal subroutines can be created in interrupt task number 0, and these subrou-
tines can be called from cyclic tasks (including extra cyclic tasks).

The GSBS instruction is used to call a global subroutine. The subroutine num-
ber must be between 0 and 1,023. The global subroutine is defined at the end
of interrupt task number 0 (just before END(001)) between the GSBN and
GRET instructions.

Global subroutines can be used to create a library of standard program sec-
tions that can be called whenever necessary.

Task 0

Task 1

Task n

Program

Block program 000

Block program 001

Block program n

Block program area 000

Block program area 001
167

Interrupt Tasks Section 4-3
4-3 Interrupt Tasks

4-3-1 Types of Interrupt Tasks
Interrupt tasks can be executed at any time in the cycle if any of the following
conditions are in effect.

The built-in interrupt inputs and high-speed counter inputs on a CJ1M CPU
Unit can be used to activate interrupt tasks. Refer to the CJ Series Built-in I/O
Operation Manual for details.

I/O Interrupts (CS Series
Only)

The I/O interrupt task will be executed when input to the Interrupt Input Unit is
ON.

Scheduled Interrupts A scheduled interrupt task will be executed at fixed intervals.

Power OFF Interrupt The power OFF interrupt task will be executed when power is turned OFF.

Note The execution time for the power OFF task must be less than 10 ms – (Power
OFF delay detection time).

GSBN
n

GSBS
n

GSBS
n

GRET

END

Cyclic task (including
extra cyclic task)

Call

Interrupt task 0

n = 0 to 1,023

Global subroutine
(shared subroutine
used for standard
programming_

Multiple tasks

Return

Call

Cyclic task (including
extra cyclic task)

Return

Exe-
cution

Interrupt
Input Unit CPU Unit

Pro-
gram

In
te

rr
up

t

Fixed interval

CPU Unit

Pro-
gram

In
te

rr
up

t
168

Interrupt Tasks Section 4-3
External Interrupts (CS
Series Only)

An external interrupt task will be executed when an interrupt is requested by
an Special I/O Unit, CPU Bus Unit, or Inner Board (CS Series only). The Spe-
cial I/O Unit or CJ Bus Unit, however, must be on the CPU Rack to request
execution of an external interrupt task.

List of Interrupt Tasks

Note 1. The Interrupt Input Unit must be mounted to the CPU Rack. For CJ1-H
CPU Units, the Unit must be connected as one of the five Units next to the
CPU Unit (slots 0 to 4). For CJ1M CPU Units, the Unit must be connected
as one of the three Units next to the CPU Unit (slots 0 to 2). I/O Interrupt
Units mounted elsewhere cannot be used to request execution of I/O inter-
rupt tasks

2. The Special I/O Unit or CPU Bus Unit must be mounted to the CPU Rack.
For CJ1-H CPU Units, the Unit must be connected as one of the five Units
next to the CPU Unit (slots 0 to 4). For CJ1M CPU Units, the Unit must be
connected as one of the three Units next to the CPU Unit (slots 0 to 2).
Units mounted elsewhere cannot be used to generate external interrupts.

Power OFF

CPU Unit

Interrupt Pro-
gram

Special I/O Unit,
CS1 CPU Bus Unit
or Inner Board CPU Unit

Pro-
gram

In
te

rr
up

t
Type Task

No.
Execution condition Setting procedure Number of

interrupts
Application examples

I/O Inter-
rupts
00 to 31

100 to
131

Input from the Interrupt
Input Unit ON on the
CPU Rack (See note 1.)

Use the MSKS (SET INTER-
RUPT MASK) instruction to
assign inputs from Interrupt
Input Units on the CPU Rack.

32 points Increasing response
speed to specific inputs

Scheduled
Interrupts
0 and 1

2 and 3 Scheduled (fixed inter-
vals)

Use the MSKS (SET INTER-
RUPT MASK) instruction to
set the interrupt interval. See
Scheduled Interrupt Time
Units in PLC Setup.

2 points Monitoring operating sta-
tus at fixed intervals

Power OFF
Interrupt

1 When power turns OFF
(After the default power
OFF detection time +
power OFF detection
delay time)

See Power OFF Interrupt
Task and Power OFF Detec-
tion Delay Time in PLC
Setup.

1 point Executing emergency
processing when power
shuts OFF.

External
Interrupts
0 to 255

0 to
255

When requested by an
Special I/O Unit or CPU
Bus Unit on the CPU
Rack or by an Inner
Board (CS Series only)
(See note 2.)

None (always valid) 256 points Performing processing
required by Special I/O
Units, CPU Bus Units,
and the Inner Board.
169

Interrupt Tasks Section 4-3
3. CJ1 CPU Units do not support I/O interrupt and external interrupt tasks.

I/O Interrupt Tasks: Tasks 100 to 131
I/O interrupt tasks are disabled by default when cyclic task execution is
started. To enable I/O interrupts, execute the MSKS (SET INTERRUPT
MASK) instruction in a cyclic task for the interrupt number for Interrupt Input
Unit.

Example: The following example shows execution I/O interrupt task 103 when
interrupt input No. 3 of Interrupt Input Unit No. 0 (the leftmost of the two Units
0 and 1) is ON.

Note Do not enable unneeded I/O interrupt tasks. If the interrupt input is triggered
by noise and there isn’t a corresponding interrupt task, a fatal error (task
error) will cause the program to stop.

Cyclic task

I/O interrupt from Interrupt Input
Unit No. 0

Interrupt input number: Only 3 will
be enabled.

The specified I/O in-
terrupt will be en-
abled when the
MSKS instruction is
executed.

Interrupt Input Unit No. 0

InterruptCyclic task

I/O interrupt task 103

#FFF7
170

Interrupt Tasks Section 4-3
Interrupt Input Unit
Numbers, Input
Numbers, and I/O
Interrupt Task Numbers

Note For CS-series PLCs, Interrupt Input Unit numbers are in order from 0 to 1
starting on the left side of the CPU Rack. For CJ-series PLCs, Interrupt Input
Unit numbers are in order from 0 to 1 starting from the CPU Unit.

Operand S (the Second Operand) of MSKS: The bits of FFF7 Hex corre-
spond to the interrupt inputs of the Interrupt Input Unit. Interrupt input num-
bers 0 to 15 correspond to bits 0 to 15.

Scheduled Interrupt Tasks: Tasks 2 and 3
Scheduled interrupt tasks are disabled in the default PLC Setup at the start of
cyclic task execution. Perform the following steps to enable scheduled inter-
rupt tasks.

1,2,3... 1. Execute the MSKS (SET INTERRUPT MASK) instruction from a cyclic
task and set the time (cycle) for the specified scheduled interrupt.

2. Set the scheduled interrupt time unit in PLC Setup.

Note The interrupt time setting affects the cyclic task in that the shorter the interrupt
time, the more frequently the task executes and the longer the cycle time.

Interrupt Input Unit No.
(See note.)

Input No. I/O interrupt task

0 0 to 15 100 to 115

1 0 to 15 116 to 131

10 10Unit No. → CPU Unit

Interrupt Input Unit

CS-series PLCs CJ-series PLCs

� Unit No. CPU Unit

Interrupt Input Unit

1 1 1 1 0 1 1 1
F Hex 7 HexF Hex F Hex
171

Interrupt Tasks Section 4-3
Example: The following examples shows executed scheduled interrupt task 2
every second.

Interrupt Numbers and Scheduled Interrupt Task Number

PLC Setup Settings

Power OFF Interrupt Task: Task 1
The power OFF interrupt task is disabled in the default PLC Setup at the start
of cyclic task execution.

The power OFF interrupt task can be enabled in the PLC Setup.

In the default PLC Setup, the power OFF interrupt task will be stopped after
10 ms. The power OFF interrupt task must be executed in less than 10 ms.

If a power OFF detection delay time is set in the PLC Setup, the power OFF
interrupt task will be stopped after 10 ms minus the power OFF detection
delay time setting in the PLC Setup. In this case, the power OFF interrupt task
must execute in less than 10 ms minus the power OFF detection delay time
set in the PLC Setup.

Cyclic task Interrupt number 4 will be executed
at an interrupt interval of 0064 Hex.

Scheduled interrupt time unit in PLC
Setup = 10 ms (0.01 s)

Every second

Interrupt

Scheduled interrupt task 2

Cyclic task

&100

Interrupt No. Scheduled interrupt task

4 2

5 3

Address Name Description Settings Default setting

Bits 0 to 3 of 195 Scheduled inter-
rupt time units

Sets time unit for scheduled inter-
rupts to execute interrupt tasks at
fixed intervals.

00 Hex: 10 ms
01 Hex: 1.0 ms
02 Hex: 0.1 ms
(CJ1M CPU Units
only)

00 Hex
172

Interrupt Tasks Section 4-3
Example: If the power OFF detection delay time is set to 4 ms in PLC Setup,
then execution time must be less than 10 minus 4 ms, or 6 ms.

Note A power OFF condition is recognized when the power supply falls below 85%
of the minimum rated voltage (80% for DC power supplies), and the time it
takes before the power OFF interrupt task actually executes is the default
power OFF detection time (10 to 25 ms for AC power supplies and 2 to 5 ms
for DC power supplies) plus the power OFF detection delay time in the PLC
Setup (0 to 10 ms). Cyclic tasks will be executed for this amount of time.

Note Be sure that the power OFF interrupt task can be executed in less than 10 ms
minus the power OFF detection delay time set in the PLC Setup. Any remain-
ing instructions will not be executed after this time has elapsed. The power
OFF interrupt task will not be executed if power is interrupted during online
editing. In addition to the instructions that cannot be used in any interrupt task
(refer to the Programming Manual for details), the following instructions can-
not be used in the power OFF interrupt task: READ DATA FILE: FREAD(700),
WRITE DATA FILE: FWRIT(701), NETWORK SEND: SEND(090), NETWORK
RECEIVE: RECV(098), DELIVER COMMAND: CMND(490), TRANSMIT:
TXD(236), RECEIVE: RXD(235), and PROTOCOL MACRO: PMCR(260).

Power OFF interrupt task

Less than 10 ms minus the
power OFF detection delay time

The default setting is 10 ms max.

Power OFF
recognized

CPU reset
(force end)

Stop

Default power OFF
detection time plus
power OFF detection
delay time

10 ms minus the power
OFF detection delay time

Cyclic task Power OFF interrupt task

Power supply < 85% of the
minimum rated voltage (80%
for DC power supplies)
173

Interrupt Tasks Section 4-3
Power OFF Interrupt Task Execution

PLC Setup Settings for Power OFF Interrupt Task (Task Number: 1)

External Interrupt Tasks: Tasks 0 to 255
External interrupt tasks can be received at any time.

Interrupt processing is performed at the CPU Unit in PLCs containing an Inner
Board (CS Series only), Special I/O Units, or CPU Bus Units. Settings don’t
have to be made at the CPU Unit unless the program contains an external
interrupt task for a particular task number.

External interrupts are not supported by CJ1 CPU Units.

Example: The following example shows an external interrupt generated from
a CS1W-SCB@1 Serial Communications Board.

When the Serial Communications Board’s response notification method is set
for interrupt notification (fixed number) or interrupt notification (reception case

Address Name Description Settings Default
setting

Bit 15 at +225 Power OFF
INTERRUPT
TASK

If bit 15 of +225 is ON, then a power OFF interrupt
task will start if power turns OFF.

0: OFF,
1: ON

0

Bits 0 to 7 at
+225

Power OFF
Detection
Delay Time

Power OFF is recognized when this time plus the
default power OFF detection time (10 to 25 ms for AC
power supplies and 2 to 5 ms for DC power supplies)
expires.

00 to 0A Hex: 0
to 10 ms (1-ms
units)

00 Hex

Cyclic task

Power
OFF

CPU reset

Power OFF interrupt task 1 Power OFF interrupt task ON/OFF
setting in PC Setup: ON

CPU Unit
Serial Communications Board

Interrupt
174

Interrupt Tasks Section 4-3
number), the Board will request execution of an external interrupt task in the
CPU Unit after it receives data from its serial port and writes that data into the
CPU Unit’s I/O memory.

Note 1. When the response notification method is set for interrupt notification (fixed
number), the Board requests execution of the interrupt task with the preset
task number.

2. When the response notification method is set for interrupt notification (re-
ception case number), the external interrupt task number is calculated with
the specified formula and the Board requests execution of the interrupt
task with that task number.

3. If an external interrupt task (0 to 255) has the same number as a power
OFF task (task 1), scheduled interrupt task (task 2 or 3), or I/O interrupt
task (100 to 131), the interrupt task will be executed for either interrupt con-
dition (external interrupt or the other interrupt condition). As a rule, task
numbers should not be duplicated.

4-3-2 Interrupt Task Priority
Execution of another interrupt task will be ended to allow the power OFF inter-
rupt task to execute. The CPU will reset but the terminated interrupt task will
not be executed following execution of the power OFF interrupt task.

CPU Unit Serial Communications Board

DataCyclic task

Interrupt task

I/O memory

Specifies exter-
nal interrupt task
number and re-
quests interrupt
processing.
175

Interrupt Tasks Section 4-3
Interrupt during Interrupt Task Execution

If an interrupt occurs while another interrupt task is being executed, the task
for the interrupt will not be executed until the original interrupt finishes execut-
ing.

Note If you do not want a specific I/O interrupt task number to be saved and exe-
cuted for a CS-series CPU Unit when it occurs while another interrupt task is
being executed, execute the CLI (CLEAR INTERRUPT) instruction from the
other interrupt task to CLEAR the interrupt number saved internally. Sched-
uled interrupts and external interrupts cannot be cancelled.

Multiple Interrupts Occurring Simultaneously

Interrupt tasks other than power OFF interrupt tasks will be executed in the
following order of priority whenever multiple interrupts occur simultaneously.

I/O interrupt tasks (CS Series only) > external interrupt tasks (CS Series only)
> scheduled interrupt tasks

Each of the various types of interrupt task will be executed in order starting
from the lowest number if more than one occurs.

Note Only one interrupt will be recorded in memory for each interrupt task and an
interrupt will not be recorded for an interrupt that is already being executed.
Because of the low order of priority of scheduled interrupts and because that
only one interrupt is recorded at a time, it is possible for a scheduled interrupt
to be skipped.

4-3-3 Interrupt Task Flags and Words
Maximum Interrupt Task Processing Time (A440)

The maximum processing time for an interrupt task is stored in binary data in
0.1-ms units and is cleared at the start of operation.

Cyclic task

Interrupt task A
Interrupt during
execution

Interrupt task B

Interrupt task A will continue
until it finishes executing.

Cyclic task
Interrupt task 101 will be ignored while
another interrupt task is being executed.

Interrupt task A
Interrupt
during
execution

I/O interrupt task

Interrupt task 101 will
not be executed.
176

Interrupt Tasks Section 4-3
Interrupt Task with Maximum Processing Time (A441)

The interrupt task number with maximum processing time is stored in binary
data. Here, 8000 to 80FF Hex correspond to task numbers 00 to FF Hex.

A44115 will turn ON when the first interrupt occurs after the start of operation.
The maximum processing time for subsequent interrupt tasks will be stored in
the rightmost two digits in hexadecimal and will be cleared at the start of oper-
ation.

Interrupt Task Error Flag (Nonfatal Error) (A40213)

If Interrupt Task Error Detection is turned ON in the PLC Setup, the Interrupt
Task Error Flag will turn ON if an interrupt task error occurs.

Interrupt Task Error Flag (A42615)/Task Number Generating the Interrupt
Task Error (A42600 to 42611)

If A40213 turns ON, then the following data will be stored in A42615 and
A42600 to A42611.

Task Number when
Program Stopped (A294)

The type of task and the current task number when a program stops due to a
program error will be stored in the following locations.

4-3-4 Application Precautions
Long Execution Times
with C200H Special I/O
Units or SYSMAC BUS (CS
Series Only)

Be sure all interrupt tasks (I/O, scheduled, power OFF, and external interrupt
tasks) execute within 10 ms when using C200H Special I/O Units or SYSMAC
BUS Remote I/O.

If an interrupt task executes for more than 10 ms during C200H Special I/O
Unit or SYSMAC BUS remote I/O refreshing, an interrupt task error will occur,
A40206 (Special I/O Unit Error Flag) will turn ON, and I/O refreshing will be
stopped for Special I/O Units. The CPU Unit, however, will continue to oper-
ate.

If Interrupt Task Error Detection is turned ON in the PLC Setup, A40213 (Inter-
rupt Task Error Flag) will turn ON when an interrupt task error occurs, and the

A40213 Interrupt Task Error Description A42615 A42600 to 42611

Interrupt Task Error (If Interrupt
Task Error Detection is turned ON
in the PLC Setup)

If an interrupt task executes for
more than 10 ms during C200H
Special I/O Unit or SYSMAC BUS
Remote I/O refresh (CS Series
only).

OFF The interrupt task number will be
stored in 12 bits of binary data
(interrupt task 0 to 255: 000 to
OFF Hex).

When trying to refresh I/O for a
large number of words using the
IORF instruction from an interrupt
task while an Special I/O Unit is
being refreshed by cyclic I/O
refreshing.

ON The unit number of the Special I/O
Unit being refreshed will be stored
in 12 bits of binary data (unit No. 0
to 95: 000 to 05F Hex).

Type A294

Interrupt task 8000 to 80FF Hex (corresponds to inter-
rupt task No. 0 to 255)

Cyclic task 0000 to 001F Hex (corresponds to task
No. 0 to 31)
177

Interrupt Tasks Section 4-3
offending interrupt task number will be stored in A426 (Interrupt Task Error,
Task Number). The CPU Unit however will continue to operate.

Executing IORF for a
Special I/O Unit

If an IORF(097) instruction has to be executed from an interrupt task for a
Special I/O Unit, be sure to turn OFF cyclic refresh for the Special I/O Unit
(using the unit number) in the PLC Setup.

A interrupt task error will occur if you try to refresh a Special I/O Unit with an
IORF(097) instruction from an interrupt task while that UNIT is also being
refreshed by cyclic I/O refresh or by I/O refresh instructions (IORF(097) or
immediate refresh instructions (!)). If Interrupt Task Error Detection is turned
ON in the PLC Setup when an interrupt task error occurs, A40213 (Interrupt
Task Error Flag) will turn ON and the unit number of the Special I/O Unit for
which I/O refreshing has been duplicated will be stored in A426 (Interrupt
Task Error, Task Number). The CPU Unit will continue running.

Note The leftmost bits of A426 (Interrupt Task Error, Task Number) can be used to
determine which of the above interrupt task errors occurred. (Bit 15: 10 ms or
higher execution error if 0, multiple refresh error if 1)

PLC Setup Settings

C200H Special I/O Unit

or Master SYSMAC
BUS Remote I/O Unit

Interrupt task

10 ms or
longer

Up to 10 ms

SYSMAC BUS
Remote I/O

Interrupt task

Incorrect Use Correct Use

Address Name Description Settings Default
setting

Bit 14 at +128 Interrupt Task Error
Detection

Specifies whether or not to detect interrupt
task errors. The Interrupt Task Error Flag
(A40213) will be function when detection is
enabled.

0: Detection
enabled,
1: Detection
disabled

0

 Special I/O Unit

I/O refresh

Interrupt task

Do not executed
IORF(097) in an interrupt
task if cyclic refreshing is
enabled for Special I/O
Units in the PC Setup.

Disable cyclic refresh-
ing for Special I/O
Units in the PC Setup
before executing the
IORF(097) instruction
in an interrupt task.

 Incorrect Use Correct Use
178

Interrupt Tasks Section 4-3
Related Auxiliary Area Flags/Words

Disabling Interrupts Processing will be interrupted and the interrupt task will be executed in the fol-
lowing instances.

• While an instruction is being executed

• During Basic I/O Unit, CPU Bus Unit, Inner Board (CS Series only), or
SYSMAC BUS remote I/O (CS Series only) refreshing

• During HOST LINK servicing

Data Concurrency
between Cyclic and
Interrupt Tasks

Data may not be concurrent if a cyclic (including extra cyclic tasks) and an
interrupt task are reading and writing the same I/O memory addresses. Use
the following procedure to disable interrupts during memory access by cyclic
task instructions.

• Immediately prior to reading or writing by a cyclic task instruction, use a
DI (DISABLE INTERRUPT) instruction to disable execution of interrupt
tasks.

• Use an EI (ENABLE INTERRUPT) instruction immediately after process-
ing in order to enable interrupt task execution.

Problems may occur with data concurrency even if DI(693) and EI(694) are
used to disable interrupt tasks during execution of an instruction that requires
response reception and processing (such as a network instruction or serial
communications instruction).

Note With the CS1-H, CJ1-H, or CJ1M CPU Unit, execution of the BIT COUNTER
(BCNT), BLOCK SET (BSET), and BLOCK TRANSFER (XFER) instructions

Name Address Description

Interrupt Task Error
Flag

A40213 Turns ON if an interrupt task executes for more than 10 ms during
C200H Special I/O Unit or SYSMAC BUS Remote I/O refresh, but the
CPU Unit will continue running. The ERR/ALM LED will light on the
front panel (CS Series only).
Turns ON if you try to refresh a Special I/O Unit with an IORF instruc-
tion from an interrupt task while that Unit is being refreshed by cyclic
I/O refresh.

Interrupt Task Error,
Task Number

A426 Contains the interrupt task number or the number of the Special I/O
Unit being refreshed.
(Bit 15 will be OFF when execution of an interrupt task requires 10 ms
or longer and ON when duplicated Special I/O Unit refreshing has
occurred.)

Cyclic task

Reading and writing I/O
memory common to interrupt
tasks.

Processing with interrupt task
execution enabled

Disabled

Enabled

Interrupt task

Interrupt task
179

Programming Device Operations for Tasks Section 4-4
will not be interrupted for execution of interrupt task, i.e., execution of the
instruction will be completed before the interrupt task is executed, delaying
the response of the interrupt. To prevent this, separate data processing for
these instructions into more than one instructions, as shown below for XFER.

4-4 Programming Device Operations for Tasks
4-4-1 Using Multiple Cyclic Tasks

Use the CX-Programmer to create more than one cyclic task (including extra
cyclic tasks). A Programming Console cannot be used to create new cyclic
tasks. Be sure to use a CX-Programmer to allocate the task type and task
number for programs that are created.

• Multiple cyclic tasks created and transferred to a CPU Unit from the CX-
Programmer can be monitored or edited from a Programming Console.

• The Programming Console can be used to create one cyclic task and one
or more specific interrupt tasks simply by using the Programming Con-
sole’s All Clear function and specifying Interrupt Tasks. Only interrupt
tasks 1 (power OFF interrupt), 2 and 3 (scheduled interrupts), and 100
through 131 (I/O interrupts) can be created with a Programming Console.
With a CJ1M CPU Unit, however, interrupt tasks 140 through 143 (for
built-in inputs) can also be created. Cyclic task 0 will start when PLC
operation is started.

4-4-2 Programming Device Operations
CX-Programmer Specify the task type and number as attributes for each program.

1,2,3... 1. Select View/Properties, or click the right button and select Properties on
the popup menu, to display the program that will be allocated a task.

2. Select the General tab, and select the Task Type and Task No. For the
cyclic task, click the check box for Operation start to turn it ON.

XFER
&50

D00050
D30050

XFER
&50

D00000
D30000

XFER
&100

D00000
D30000

Interrupts are possible as
soon as execution of XFER
has been completed.

XFER instruction is
not interrupted.

Processing
separated.
180

Programming Device Operations for Tasks Section 4-4
Programming Console A task is handled as the entire program on the Programming Console. Access
and edit a program with a Programming Console by specifying CT00 to CT31
for a cyclic task or IT001 to IT255 for an interrupt task.

Note 1. A Programming Console cannot create new cyclic tasks.

2. The CJ-series CPU Units do not currently support I/O or external interrupt
tasks. Only IT001 to IT003 can be specified.

CLR

0: Cyclic task, 1: Interrupt task

Cyclic task No.?

Enter 00 to 31.

Write

Enter 000 to 255.

Interrupt task No.?

FUN

0

Write

1

CHG

00
181

Programming Device Operations for Tasks Section 4-4
182

SECTION 5
File Memory Functions

This section describes the functions used to manipulate file memory.

5-1 File Memory . 184

5-1-1 Types of File Memory. 184

5-1-2 File Data . 186

5-1-3 Files. 188

5-1-4 Description of File Operating Procedures . 196

5-1-5 Applications . 197

5-2 Manipulating Files . 199

5-2-1 Programming Devices (Including Programming Consoles). 199

5-2-2 FINS Commands . 202

5-2-3 FREAD(700), FWRIT(701), and CMND(490) 203

5-2-4 Replacement of the Entire Program During Operation 208

5-2-5 Automatic Transfer at Startup. 214

5-2-6 Simple Backup Function. 217

5-3 Using File Memory . 226

5-3-1 Initializing Media . 226

5-3-2 Operating Procedures for Memory Cards. 228

5-3-3 Operating Procedures for EM File Memory. 230
183

File Memory Section 5-1
5-1 File Memory
The CS/CJ Series support file memory. The following media can be used as
memory for storing files.

1,2,3... 1. Memory Cards

2. A specified range in the EM Area called EM file memory

Note CJ1M CPU Units do not have an EM Area, so EM file memory can-
not be used.

Both types of memory can be used to store the entire user program, I/O mem-
ory, and parameter areas as files.

5-1-1 Types of File Memory

Note 1. Refer to 5-2 Manipulating Files for details on installing and removing Mem-
ory Cards.

2. Initialize the Memory Card or EM File Memory before using it for the first
time. Refer to 5-3 Using File Memory for details on initialization.

3. The HMC-AP001 Memory Card Adapter can be used to mount a Memory
Card in the PLC card slot of a personal computer to use the Memory Card
as a storage device.

CPU Unit

Memory
Card

File

File

File

File

EM area

Category Type Capacity Model File data recognized by
the CPU Unit

Allowed file
operations

Flash
memory

8 Mbytes HMC-EF861 1) Entire user program

2) Specified range in I/O
memory

3) Parameter area data
(PLC Setup and other
settings)

See note 4.

All are possible.
(See page 196
for details.)

15 Mbytes HMC-EF171

30 Mbytes HMC-EF371

48 Mbytes HMC-EF571

RAM EM area capac-
ity of CPU Units

CS Series
CS1H-CPU67H:
832 Kbytes
(Banks 0 to C:
E0_00000 to
EC_00000)

CJ Series
CJ1H-CPU66H:
448 Kbytes
(Banks 0 to 6:
E0_00000 to
E6_00000)

From the speci-
fied bank in the
EM area of I/O
memory to the
last bank (speci-
fied in PLC
Setup)

The automatic
transfer at startup
function cannot
transfer data
from EM File
Memory. (See
page 196 for
details.)

Memory Cards

EM File Memory
EM area

EM File
Memory

Bank 0
Bank 1

Bank n

Bank C
184

File Memory Section 5-1
4. When the CX-Programmer is being used, the CPU Unit can recognize
symbol tables (including I/O comments) and comments. The transfer des-
tination is the Memory Card when a Memory Card is installed or EM File
Memory if a Memory Card is not installed.

Memory Card Precautions

Confirm the following items before using a Memory Card.

Format

Memory Cards are formatted before shipping. There is no need to format
them after purchase. To format them once they have been used, always do so
in the CPU Unit using the CX-Programmer or a Programming Console.

If a Memory Card is formatted directly in a notebook computer or other com-
puter, the CPU Unit may not recognize the Memory Card. If this occurs, you
will not be able to use the Memory Card even if it is reformatted in the CPU
Unit.

Number of Files in Root Directory

There is a limit to the number of files that can be placed in the root directory of
a Memory Card (just as there is a limit for a hard disk). Although the limit
depends on the type and format of the Memory Card, it will be between 128
and 512 files. When using applications that write log files or other files at a
specific interval, write the files to a subdirectory rather than to the root direc-
tory.

Subdirectories can be created on a computer or by using the CMND(490)
instruction. Refer to *!�,!��&�+�-�����$$.�&/��$�&0�12����	�
���3��
������������	'��������(����'� for a specific example using CMND(490).

Number of Writes

Generally speaking, there is no limit to the number of write operations that can
be performed for a flash memory. For the Memory Cards, however, a limit of
100,000 write operations has been set for warranty purposes. For example, if
the Memory Card is written to every 10 minutes, over 100,000 write opera-
tions will be performed within 2 years.

Minimum File Size

If many small files, such as ones containing only a few words of DM Area
data, are stored on the Memory Card, it will not be possible to use the com-
plete capacity of the Memory Card. For example, if a Memory Card with an
allocation unit size of 4,096 bytes is used, at least 4,096 bytes of memory will
be used for each file regardless of how small the file is. If you save 10 words
of DM Area data to the Memory Card, 4,096 bytes of memory will be used
even though the actual file size is only 68 bytes. Using files of such a small
size greatly reduces the utility rate of the Memory Card. If the allocation unit
size is reduced to increase the utility rate, however, the access speed will be
reduced.

The allocation unit size of the Memory Card can be checked from a DOS
prompt using CHKDSK. The specific procedure is omitted here. Refer to gen-
eral computer references for more information on allocation unit sizes.

Memory Card Access Precautions

When the PLC is accessing the Memory Card, the BUSY indicator will light on
the CPU Unit. Observe the following precautions.

1,2,3... 1. Never turn OFF the power supply to the CPU Unit when the BUSY indica-
tor is lit. The Memory Card may become unusable if this is done.
185

File Memory Section 5-1
2. Never remove the Memory Card from the CPU Unit when the BUSY indi-
cator is lit. Press the Memory Card power OFF button and wait for the
BUSY indicator to go out before removing the Memory Card. The Memory
Card may become unusable if this is not done.

3. Insert the Memory Card with the label facing to the right. Do not attempt to
insert it in any other orientation. The Memory Card or CPU Unit may be
damaged.

4. A few seconds will be required for the CPU Unit to recognize the Memory
Card after it is inserted. When accessing a Memory Card immediately after
turning ON the power supply or inserting the Memory Card, program an
NC condition for the Memory Card Recognized Flag (A34315) as an input
condition, as shown below.

5-1-2 File Data
The following files can be written from a Programming Device (CX-Program-
mer or Programming Console), FINS commands, ladder instructions, or spe-
cial control bits in CPU Unit memory:

� ����������
�

� ��	����
�

� �����
	
����
�

Note The following three types of files can also be written from the CX-Program-
mer.

� ���������
���
�

� ���
�	���
�

� �����������
!���
�

Memory Card
Detected Flag

File Memory
Operation Flag

Execution
condition

User Program: Program File
Entire program including
task attributes

Entire program

Specified Rang
Data Files

e in I/O Memory:

Entire range or specified part of
one memory area

P
Parameter File

arameter Area Data:

Initial settings used in the
CPU Unit.

CS1 CPU Bus
Unit settings area

Routing tables

I/O tables

PC Setup

Specified
part

or

Entire
area
186

File Memory Section 5-1
Note Symbol tables (symbols, addresses, and I/O comments) can be treated as
files from the CX-Programmer.

Data transfer operations can be performed for projects from the CX-Program-
mer to transfer all of the above files (symbol table files, comment files, pro-
gram index files) between the CPU Unit and a Memory Card or between EM
file memory. (Program index file transfers are supported starting from version
2.0.) The symbol table files and comment files can also be transferred
between the CX-Programmer, computer RAM, and a data storage device with
CX-Programmer version 1.2 or later.

The CX-Programmer can also be used to save data from individual parameter
areas in files with an extension of .STD. (These files cannot be used for auto-
matic transfer at startup. All parameter areas must be save in one file to
enable automatic transfer at startup.)

File File name Extension Contents

Symbol table file SYMBOLS .SYM Global and local symbols

Comment file COMMENTS .CMT Rung comments and comments
(annotations)

Program index file PROGRAM .IDX Section names and section com-
ments

Symbol Table Files
Tables of variables used
by the CX-Programmer

Symbols, addresses, data
types, I/O comments

Comment Files
Comments used by the
CX-Programmer

Rung comments

Comments

Program Index File
Section information (used by
CX-Programmer)

Section names, section
comments

CX-Programmer

CPU Unit

User program
I/O memory
Etc.

Program files
Data files

Programming Device,
FINS commands,
ladder instructions, or
control bits

Programming Device, FINS
commands, ladder instructions, or
control bits

Program files
Data files

EM file
memory

Memory
Card

Data transfer
operations from the
CX-Programmer

Symbol files
Comment files
Program index files

When a Memory Card is
not inserted

Files That Can Be Written
from the CPU Unit

Files That Can Be Written
from the CX-Programmer
187

File Memory Section 5-1
5-1-3 Files
Files are formatted in DOS, and therefore can be used as regular files on a
Windows computer.

Files are identified by file names and extensions, as shown in the following
table. A file name is written using the following characters: Letters A to Z,
numbers 0 to 9, !, &, $, #, `, {, }, –, ^, (,), and _

The following characters cannot be used in file names: ,, ., /, ¥, ?, *, “, :, :, <, >,
=, +, space

The filename extensions depend upon the type of file being stored. Data files
can have extensions IOM, TXT, CSV, or IOR. (TXT, CSV, and IOR extensions:
Not supported by CS-series CS1 CPU Units that are pre-EV1.) Program files
have the extension OBJ and parameter files have the extension STD. The
location of a file in memory can be specified in the directory, and a directory
can be up to 5 subdirectories deep (counting the root directory).

File Types, Names, and Extensions
There are 3 types of files that can be managed (read and written) by the CPU
Unit.

� �	�	
�����
���	����	�
��
�
���
�������
����
��
��"�
������#��		
�$�#�	���������������
%��
��
��&�� ���������� ���	���	������ ��� '�!������ '�
�� ���	��� ��	� ��
��	�����
��
���
����
�������
��
���
����

�����	�
���
��

� �������� �!
���"	
�������
�������	�
��
�
� ��
�� ��
� ��	���	����� 	�����
��
�� ����� 	�
�(
����� ���� 	�� 	�

 �)�)��	� #�
�� 	�
� ��#
�� ��� 	���
�� *&�� ��
� ��
� ���
�� ��
� ��!
�� ��
')�*+,+ ����'�+,+ @@�
� #� $������	��"Not supported by CS-series CS1 CPU Units that are pre-

EV1$
��
�
���
����
�	�����
��
���
	#

��	�
�(
����� �������� �)�)��	���
	�
������������	�������
���
���
����
���!
�����-' .)�@@�

General-purpose Files The following table shows file names and extensions of general-purpose files.

Note 1. File names, represented by “********” above, consist of up to 8 ASCII char-
acters.

2. The TXT and CSV file formats: Not supported by CS-series CS1 CPU
Units that are pre-EV1.

3. One example of the CPU Bus Unit settings would be the Data Link Tables.
Refer to the operation manuals for specific Units for other setup data.

Type Name1 Extension Description Explanation

Data File ******** .IOM Specified range in
I/O memory

• Data from start to end word in
word units (16 bits) located in
one area.

• The area can be the CIO, HR,
WR, AR, DM, or EM Area.

Binary format

.TXT TXT format2

(non-delimited or
tab-delimited)

.CSV CSV format2

(comma-delimited)

Program File ******** .OBJ Entire user pro-
gram

• All cyclic and interrupt tasks as well as task data for
one CPU Unit.

Parameter
Area File

******** .STD PLC Setup, regis-
tered I/O table,
routing tables,
CPU Bus Unit
settings3, etc.

• Includes all initial settings for one CPU Unit.
• The user does not have to distinguish parameter data

in the file by type.
188

File Memory Section 5-1
Files Automatically Transferred at Startup
The File column indicates the files that must be present in the Memory Card
to enable automatic transfer at startup.

Note 1. Make sure the names of the files to be transferred automatically at startup
are AUTOEXEC or ATEXEC@@.

2. The ATEXECDM.IOM and ATEXECE@.IOM files: Not supported by CS-
series CS1 CPU Units that are pre-EV1.

Type Name1 Extension Description Explanation File

Data File AUTOEXEC .IOM I/O memory data
(Contains the specified
number of words of data
beginning at D20000.)

� Store DM data beginning at D20000 in
a file named AUTOEXEC.IOM.

� At startup, all of the data in the file will
be transferred to the DM Area begin-
ning at D20000.

� This file does not have to be on the
Memory Card when the automatic
transfer at startup function is being
used.

ATEXECDM .IOM I/O memory data2

(Contains the specified
number of words of data
beginning at D00000.)

� Store DM data beginning at D00000 in
a file named ATEXECDM.IOM.

� At startup, all of the data in the file will
be transferred to the DM Area begin-
ning at D00000.

� This file does not have to be on the
Memory Card when the automatic
transfer at startup function is being
used.

Note The data in this file has higher pri-
ority if it overlaps the DM data
contained in AUTOEXEC.IOM.

ATEXECE@ .IOM EM Area data (bank @)2

(Contains the specified
number of words of data
beginning at
E@_00000.)

• Store data for EM bank @ beginning at
E@_00000 in a file named ATEX-
ECE@.IOM. The maximum bank num-
ber depends upon the model of CPU
Unit being used.

• At startup, all of the data in the file will
be transferred to EM bank @ beginning
at E@_00000.

• This file does not have to be on the
Memory Card when the automatic
transfer at startup function is being
used.

Program
File

AUTOEXEC .OBJ Entire user program • The file does not have to be on the
Memory Card even when automatic
transfer at startup is specified.

• All cyclic and interrupt task programs
as well as task data for one CPU Unit.

Required

Parameter
Area File

AUTOEXEC .STD PLC Setup, registered
I/O table, routing tables,
CPU Bus Unit settings3,
etc.

The file must be on the Memory Card
when automatic transfer at startup is
specified.

Includes all initial settings for one CPU
Unit.
The user does not have to distinguish
parameter data in the file by type.
Initial setting data will automatically be
stored at specific locations in the CPU
Unit at startup

Required
189

File Memory Section 5-1
3. One example of the CPU Bus Unit settings would be the Data Link Tables.
Refer to the operation manuals for specific Units for other setup data.

Backup Files (Not
Supported by CS-series
CS1 CPU Units That Are
Pre-EV1)

The files in the following table are created automatically when data is trans-
ferred to and from the Memory Card during backup operation.

Note 1. Make sure the names of the files used for backup are BACKUP@@.

2. The CIO Area, WR Area, Timer/Counter Completion Flags and PVs, and
force-set/force-reset data that is read from the Memory Card at startup will
be cleared. This data can be retained with the following PLC Setup set-
tings: IOM Hold Bit Status at Startup and Forced Status Hold Bit Status at
Startup.

Type Name1 Extension Description Explanation

Data file BACKUP .IOM DM Area words allo-
cated to Special I/O
Units, CPU Bus
Units, and Inner
Boards (CS Series
only)

• Contains DM data from D20000 to D32767.
• This file must exist on the Memory Card when

reading data from the Memory Card during
backup.

BACKUPIO .IOR I/O memory data
areas

• Contains all of the data in the CIO, WR, HR, and
AR data areas as well as timer/counter Comple-
tion Flags and PVs.2

• This file must exist on the Memory Card when
reading data from the Memory Card during
backup.

BACKUPDM .IOM General-purpose DM
Area

• Contains DM data from D00000 to D19999.
• This file must exist on the Memory Card when

reading data from the Memory Card during
backup.

BACKUPE@ .IOM General-purpose EM
Area

Contains all of the EM data for EM bank @ with
addresses ranging from E@_00000 to E@_32767.
(The maximum bank number depends upon the
model of CPU Unit being used.)

This file must exist on the Memory Card when read-
ing data from the Memory Card during backup.
• When data is backed up to the Memory Card, all

of the data in each EM bank is automatically writ-
ten to a separate file.

Program file BACKUP .OBJ Entire user program • Contains all cyclic and interrupt task programs as
well as task data for one CPU Unit.

• This file must exist on the Memory Card when
reading data from the Memory Card during
backup.

Parameter file .STD PLC Setup, regis-
tered I/O table, rout-
ing tables, CPU Bus
Unit settings3, etc.

• Contains all initial settings for one CPU Unit.
• The user does not have to distinguish parameter

data in the file by type.
• This file must exist on the Memory Card when

reading data from the Memory Card during
backup.

Unit/Board
backup files
(CS1-H, CJ1-
H, or CJ1M
CPU Units
only)

BACKUP@@
(where @@ is
the unit
address of
the
Unit/Board
being backed
up)

.PRM Data for specific Unit
or Board

• Control backup data from one Unit or Board.
Refer to ,!�! � ��%�
�� 4�'�	�� "	�'���� for
details.
190

File Memory Section 5-1
3. One example of the CPU Bus Unit settings would be the Data Link Tables.
Refer to the operation manuals for specific Units for other setup data.

Directories
It is possible to access files in subdirectories with CS/CJ-series PLCs, but
Programming Consoles can access files only when they are in the root direc-
tory. The maximum length of a directory path is 65 characters. Be sure not to
exceed the maximum number of characters when creating subdirectories in
the Memory Card with a program such as Windows.

File Sizes
The size of files in bytes can be calculated with the equations in the following
table.

Note Calculate the number of steps in the program file by subtracting the available
UM steps from the total UM steps. These values are shown in the CX-Pro-
grammer’s Cross-Reference Report. Refer to the CX-Programmer User Man-
ual for details.

File type File size

Data files (.IOM) (Number of words � 2) + 48 bytes
Example: Entire DM Area (D00000 to D32767)
(32,768 words � 2) + 48 = 65,584 bytes

Data files (.TXT or .CSV) The file size depends upon the number of delimiters and
carriage returns being used. The delimiter code is one
byte and the carriage return code is two bytes.
Example 1: Non-delimited words, no carriage return
123456789ABCDEF012345678 occupies 24 bytes.
Example 2: Delimited words, carriage return every 2 fields
1234,5678�
9ABC,DEF0�
1234,5678�
occupies 33 bytes.

Example 3: Delimited double words, carriage return every
2 fields
56781234,DEF01234�
56781234�
occupies 29 bytes.

Program files (.OBJ) (Number of steps used � 4) + 48 bytes (See note.)

Parameter files (.STD) 16,048 bytes
191

File Memory Section 5-1
Data Files

General-purpose Files

1,2,3... 1. General-purpose data files have filename extensions IOM, TXT, or CSV.
(The TXT and CSV files: Not supported by CS-series CS1 CPU Units that
are pre-EV1.)

Note a) Reading and Writing TXT and CSV Data Files:
TXT and CSV data files can be read and written with FREAD(700)
and FWRIT(701) only.

b) Precautions on Characters:
Data cannot be written to I/O memory properly if the TXT or CSV
file contains characters other than hexadecimal characters (0 to 9,
A to F, or a to f.)

c) Precautions on Field Size:
When words are being used, data cannot be written to I/O memory
properly if the TXT or CSV file contains fields that are not 4-digit
hexadecimal. Likewise, when double words are being used, data
cannot be written properly if the file contains fields that are not 8-
digit hexadecimal.

d) Storage Order:
When words are being used, I/O memory data is converted to
ASCII and stored in one-word fields in order from the lowest to the
highest I/O memory address.
When double words are being used, I/O memory data is converted
to ASCII and stored in two-word fields in order from the lowest to
the highest I/O memory address. (Within the two-word fields, the
higher-address word is stored first and the lower-address word is
stored second.)

Extension Data format Contents Words/field

.IOM Binary CS/CJ-series data format ---

.TXT
(See notes.)

Non-delimited
words

ASCII
format

This format is created by converting one-word fields of I/O
memory (4-digit hexadecimal) to ASCII and packing the
fields without delimiters. Records can be delimited with car-
riage returns.

1 word

Non-delimited
double words

This format is created by converting two-word fields of I/O
memory (8-digit hexadecimal) to ASCII and packing the
fields without delimiters. Records can be delimited with car-
riage returns.

2 words

Tab-delimited
words

This format is created by converting one-word fields of I/O
memory (4-digit hexadecimal) to ASCII and delimiting the
fields with tabs. Records can be delimited with carriage
returns.

1 word

Tab-delimited
double words

This format is created by converting two-word fields of I/O
memory (8-digit hexadecimal) to ASCII and delimiting the
fields with tabs. Records can be delimited with carriage
returns.

2 words

.CSV
(See notes.)

Comma-delimited
words

This format is created by converting one-word fields of I/O
memory (4-digit hexadecimal) to ASCII and delimiting the
fields with commas. Records can be delimited with carriage
returns.

1 word

Comma-delimited
double words

This format is created by converting two-word fields of I/O
memory (8-digit hexadecimal) to ASCII and delimiting the
fields with commas. Records can be delimited with carriage
returns.

2 words
192

File Memory Section 5-1
e) Delimiters:
When there are no delimiters, the fields are packed consecutively
and then stored. When delimited by commas, commas are insert-
ed between fields before they are stored. When delimited by tabs,
tab codes are inserted between fields before they are stored.
When delimiters (commas or tabs) are specified in FREAD(700),
the data is read as delimited data with one-word delimiters (com-
mas or tabs).

f) Carriage Returns:
Data is packed consecutively when carriage returns are not used.
When carriage returns are used, a carriage return code is inserted
after the specified number of fields. An offset from the beginning
of the file (starting read word or starting write word) cannot be
specified in the FREAD(700)/FWRIT(701) instructions if carriage
returns are used in the file.

g) Number of Fields:
The overall amount of data in the file depends upon the number of
fields (number of write items) specified in the FWRIT(701) instruc-
tion and the number of words/field. There is one word/field when
words are used and two words/field when double words are used.

2. Data files do not contain information indicating what data is stored, i.e.,
what memory area is stored. Be sure to give file names that indicate the
contents, as shown in the examples below, to aid in file management.

Examples: D00100.IOM, CIO0020.IOM
Data from the beginning of the file will be written starting at the address
specified in I/O memory even if the data originally written to the data file
(IOM, TXT, or CSV) is not from the same area. For example, if CIO data in
a file is written to the DM Area from a Programming Device, the data will
be read to the DM Area of the CPU Unit without any indication that the area
is different.

Note Data files with the TXT and CSV format contain hexadecimal (0 to 9, A to F)
data that allows the I/O memory numerical data to be exchanged with spread-
sheet programs.

IOM Data File Structure The following illustration shows the binary data structure of a data file
(ABC.IOM) containing four words from I/O memory: 1234 Hex, 5678 Hex,
9ABC Hex, and DEF0 Hex. The user, however, does not have to consider the
data format in normal operations.

CSV/TXT Data File
Structure (Single Word)

The following illustration shows the data structure of a CSV data file
(ABC.CSV) with single-word fields containing four words from I/O memory:
1234 Hex, 5678 Hex, 9ABC Hex, and DEF0 Hex. The structure of the TXT file
with single-word fields is the same.

I/O memory 48 bytes (used by system)

8 bytes

Contents of ABC.IOM
193

File Memory Section 5-1
CSV/TXT Data File
Structure (Double Word)

The following illustration shows the data structure of a CSV data file
(ABC.CSV) with double-word fields containing four words from I/O memory:
1234 Hex, 5678 Hex, 9ABC Hex, and DEF0 Hex. The structure of the TXT file
with double-word fields is the same.

Creating Data Files with
Spreadsheet Software

Use the following procedure to create TXT and CSV data files with spread-
sheet software such as Microsoft Excel.

� �
	�	�
��
����	
�	��	�����
�������������	
���

� ����	�/�������	
��� ���
�����
� ��� ����
0#���� ��
�����
��
������
�����1
������	
��� ��� ����
0#���� ��
�����
��
������
�������
!���
�� ��� ����
0
#������
�����
��
������
������	�222'����	�3��	�'�

� -
����
�	������	������
!��
�����������	
���"2�	��4��'�	����������	���$���
	�
��
���*	�
��������	
����������
�������	��
���
��

When you want to store hexadecimal digits in I/O memory, it is helpful to con-
vert the spreadsheet’s decimal inputs to hexadecimal. Use the following pro-
cedure to convert to hexadecimal.

1,2,3... 1. Select Add-Ins... from the Tools Menu.

2. Select Analysis ToolPak in the Add-Ins Menu.

3. Select Function from the Insert Menu at the cell where the function will be
used.

4. Select DEC2HEX (number, digits) from Engineering in the Category
Field.

5. When converting to 4-digit hexadecimal, input the following at the number
variable: IF(0<=cell location,cell location,65535+cell location)

When converting to 8-digit hexadecimal, input the following at the number
variable: IF(0<=cell location,cell location,4294967296+cell location)

I/O memory
4 bytes

Delimiter

Contents of ABC.CSV

4 bytes

Delimiter

The file displayed as text.

Converted
to ASCII

I/O memory

8 bytes

Delimiter

Contents of ABC.CSV

The file displayed as text.

Converted to
ASCII (Upper
word first)
194

File Memory Section 5-1
� �%����	�&�����		�������0�
��	�%
��
�����%��
��

• Example 2: Inputting signed decimal values.

Data Files Transferred
Automatically at Startup

There are 3 kinds of files that are transferred automatically at startup when
the automatic transfer at startup function is being used.

� ')�*+,+ ��*(5� �(� #����� ����	
�� 	�� ��
���� �6*�)��	�� ���� ���
�
-������
��
� ���	
�	�� ��� 	���� ��
� ��
� 	�����
��
�� 	�� 	�
� �(� '�
�� �
�������� �	
�72222�#�
����#
�����	���
��*&��

� '�+,+ �(��*(5�8
�
��0������
��(�#����
��
� ���	
�	�� ��� 	���� ��
� ��
� 	�����
��
�� 	�� 	�
� �(� '�
�� �
�������� �	
�22222�#�
����#
�����	���
��*&�

� '�+,+ +@��*(5�8
�
��0������
�+(�#����
��
� ���	
�	�� ��� 	���� ��
� ��
� 	�����
��
�� 	�� 	�
� +(� '�
�� �
�������� �	
+@922222�#�
����#
�����	���
��*&�

When creating the data files listed above, always specify the first address
shown above (D20000, D00000, or E@_00000) and make sure that the size of
the file does not exceed the capacity of the specified data area.

All of the data in each file will always be transferred starting at the specified
first address (D20000, D00000, or E@_00000).

Note 1. When creating the AUTOEXEC.IOM, ATEXECDM.IOM, or ATEX-
ECE@.IOM file from a Programming Device (Programming Console or CX-
Programmer), always specify the proper first address (D20000, D00000, or
E@_00000) and make sure that the size of the file does not exceed the ca-
pacity of the DM Area or specified EM bank. The contents of the file will
always be transferred starting at the proper first address (D20000,
D00000, or E@_00000) even if another starting word is specified, which
could result in the wrong data overwriting the contents of that part of the
DM Area or EM bank. Furthermore, if the capacity of the DM Area or EM
bank is exceeded (as is possible when making settings from the CX-Pro-
grammer), the remaining data will be written to EM bank 0 if the DM Area
is exceeded or the following EM bank if an EM bank is exceeded.

Item Converting unsigned decimal to 4-digit
hexadecimal

Converting unsigned decimal to 8-digit
hexadecimal

Function
used

DEC2HEX(cell_location,4) DEC2HEX(cell_location,8)

Example Input 10 in decimal and convert to 000A in 4-digit
hexadecimal.

Input 10 in decimal and convert to 0000000A in
8-digit hexadecimal.

Item Converting signed decimal to 4-digit hexadecimal Converting signed decimal to 8-digit hexadecimal

Function
used

DEC2HEX(IF(0<=cell_location,cell_location,65536+
cell_location),4)

DEC2HEX(IF(0<=cell_location,cell_location,
4294967296+cell_location),8)

Example Input -10 in decimal and convert to FFF6 in 4-digit
hexadecimal.

<

Input -10 in decimal and convert to FFFFFFF6 in
8-digit hexadecimal.

<

195

File Memory Section 5-1
2. When using the CX-Programmer, you can specify a data file that will ex-
ceed the maximum DM Area address D32767 or maximum EM Area ad-
dress of E@_32767. If the AUTOEXEC.IOM file exceeds the boundary of
the DM area, all remaining data will be written to the EM Area starting at
E0_00000 and continuing in order of memory address and banks through
the final bank. It is thus possible to automatically transfer data to both the
DM and EM Areas at startup. Likewise, if the ATEXECE@.IOM file is larger
than an EM bank, the remaining data will be written to subsequent EM
banks.

3. The System Setups for Special I/O Units, CPU Bus Units, and the Inner
Board (CS Series only) can be changed by using different AUTOEX-
EC.IOM files containing different settings for the Special I/O Unit Area
(D20000 to D29599), CPU Bus Unit Area (D30000 to D31599), and the In-
ner Board Area (CS Series only, D32000 to D32099). Memory Cards can
thus be used to create libraries of System Setup data for Special I/O Units,
CPU Bus Units, and Inner Boards (CS Series only) for different systems or
devices.

Backup Data Files The backup function creates 4 kinds of data files as described below.

To backup data, turn pin 7 ON and turn pin 8 OFF on the CPU Unit’s DIP
switch, insert the Memory Card, and press and hold the Memory Card Power
Supply Switch for three seconds. The four backup files (BACKUP.IOM, BACK-
UPIO.IOR, BACKUPDM.IOM, and BACKUPE@.IOM) will be created automat-
ically and written to the Memory Card.

The four backup files are used exclusively by the backup function, although
three of the files (BACKUP.IOM, BACKUPDM.IOM, and BACKUPE@.IOM)
can be created with Programming Device operations. (BACKUPIO.IOR can-
not be created with Programming Device operations.)

5-1-4 Description of File Operating Procedures
The following table summarizes the 6 methods that can be used to read and
write files.

Read: Transfers files from file memory to the CPU Unit.
Write: Transfers files from the CPU Unit to file memory.

Operating
procedure

Medium File name Description Entire
program

Data Area
data (See
note 3.)

Parameter
Area data

Programming Device
(including Program-
ming Consoles)

Memory Card
EM file memory

Any valid file
name

Read OK OK OK

Write OK OK OK

Other operations
(See note 2.)

OK OK OK

FINS command
(See note 1.)

Memory Card
EM file memory

Any valid file
name

Read OK OK OK

Write OK OK OK

Other operations
(See note 2.)

OK
(See note 4.)

OK OK

FREAD(700) and
FWRIT(701) Instruc-
tions

Memory Card
EM file memory

Any valid file
name

Read data from
one file.

Not possible OK Not possible

Write data to one
file.

Not possible OK Not possible
196

File Memory Section 5-1
Note 1. FINS commands for file memory operations can be sent from host comput-
ers connected via a Host Link, another PLC connected to a network (using
CMND(490)), or the local PLC’s program (using CMND(490)). (For CS-se-
ries CS1 CPU Units that are pre-EV1, file memory operations cannot be
executed using CMND(490) in the same CPU Unit for which the file mem-
ory operations are being performed.

2. Other Operations: Format file memory, read file data, write file data,
change file name, read file memory data, delete file, copy file, create sub-
directory, and change file name.

3. Data files with the TXT or CSV formats can be read and written only with
the FREAD(700) and FWRIT(701) instructions. They cannot be read and
written with a Programming Device.

4. Version V1.2 and higher versions of the CX-Programmer can be used to
transfer program files (.OBJ) between the computer’s RAM and a storage
device.

5-1-5 Applications
File memory can be used for the following applications.

Data Files In this application, DM Area data settings (for Special I/O Units, CPU Bus
Units, and Inner Boards (CS Series only)) are stored in the Memory Card. If
the data file is named AUTOEXEC.IOM, the settings stored in the file will be
automatically transferred when power is turned ON.

In this application, operation data (trends, quality control, and other data) gen-
erated during program execution is stored in EM file memory using the
WRITE DATA FILE instruction (FWRIT(701)).

Auxiliary Area control
bit operation replaces
the entire program
during operation.
(Not supported by
CS-series CS1 CPU
Units that are pre-
EV1)

Memory Card Any valid file
name

Read OK Not possible Not possible

Automatic Transfer at
Startup

Memory Card AUTOEXEC or
ATEXEC@@

Read OK OK OK

Write Not possible Not possible Not possible

Backup operation
(Not supported by
CS-series CS1 CPU
Units that are pre-
EV1)

Memory Card BACKUP@@ Read OK OK OK

Write OK OK OK

Operating
procedure

Medium File name Description Entire
program

Data Area
data (See
note 3.)

Parameter
Area data

Data in an allocated DM area.

Example: ABC.IOM
197

File Memory Section 5-1
Note Data that is often accessed, such as trend data, is better stored in EM file
memory rather than on a Memory Card.

ASCII Data Files
(.TXT and .CSV)

Production data that has been saved on the Memory Card in the TXT or CSV
format can be transferred to a personal computer via a Memory Card Adapter
and edited with a spreadsheet program (Not supported by CS-series CS1
CPU Units that are pre-EV1).

Conversely, data such as Special I/O Unit settings can be created with a
spreadsheet program in TXT or CSV format, stored on a Memory Card, and
read to the CPU Unit by FREAD(700) (Not supported by CS-series CS1 CPU
Units that are pre-EV1).

Program Files(.OBJ) In this application, programs that control different processes are stored on
individual Memory Cards. The entire PLC configuration (program, PLC Setup,
etc.) can be changed by inserting a different Memory Card and using the
automatic transfer at startup function.

The entire program can be replaced during operation from the program itself
(without a Programming Device) using an Auxiliary Area control bit (Not sup-
ported by CS-series CS1 CPU Units that are pre-EV1).

Parameter Area Files
(.STD)

In this application, the PLC Setup, routing tables, I/O table, and other data for
particular devices or machines are stored in Memory Cards. The data can be
transferred to another device or machine just by switching the Memory Card.

Trends, etc.

EM file memory

I/O memory data stored
in TXT or CSV format

Memory Card

Via Memory Card Adapter

Spreadsheet program

or

A.OBJ B.OBJ C.OBJ

During operation .OBJ

Replace program.
198

Manipulating Files Section 5-2
Backup Files The backup function can be used to store all of the CPU Unit’s data (the entire
I/O memory, program, and parameter area) on the Memory Card without a
Programming Device. If a problem develops with the CPU Unit’s data, the
backed-up data can be restored immediately. (Not supported by CS-series
CS1 CPU Units that are pre-EV1)

Symbols Table Files The CX-Programmer can be used to save program symbols and I/O com-
ments in symbols table files called SYMBOLS.SYM in Memory Cards or EM
file memory.

Comment Files The CX-Programmer can be used to save program rung comments in com-
ment files called COMMENTS.CMT in Memory Cards or EM file memory.

5-2 Manipulating Files
The following procedures are used to read, write and otherwise work with files
using the following methods.

� �������������
%��
�

� ��&����������

� �:+'�";22$���<:��";2�$������ (&�"/42$����	���	��������	�
���
�����0
�����" (&�"/42$: Not supported by CS-series CS1 CPU Units that are
pre-EV1�$

� :
���
�
�	����	�
�
�	��
���������������'�!������'�
�����	�����	��"&�	
������	
����� �0�
��
�� ��� �)�)��	��	��	���
���
0+=�$

� '�	���	���	�����
���	��	��	��

� -������ ����	���� "&�	� ������	
�� ��� �0�
��
�� ��� �)�)��	�� 	��	� ��

��
0+=�$

5-2-1 Programming Devices (Including Programming Consoles)
The following operations are available through Programming Devices.

Use A.STD.

Operation CX-Programmer Programming
Console

Reading files (transfer from file memory
to CPU Unit)

OK OK

Writing files (transfer from CPU Unit to
file memory)

OK OK

Comparing files (compare files in the
CPU Unit and file memory)

Not possible OK
199

Manipulating Files Section 5-2
Note 1. Create any required volume labels using Windows Explorer.

2. File memory uses the Windows quick format. If formatting error occur for
Memory Cards, they can be formatted with the normal Windows format
command.

3. The time and date for files written for transfers from the CPU Unit to file
memory will be taken from the clock in the CPU Unit.

A Memory Card can be installed in a computer’s PLC Card slot with the HMC-
AP001 Memory Card Adapter (sold separately). Installing a Memory Card in
the computer allows the files in the card to be read and written by other pro-
grams, such as Windows Explorer.

Formatting file
memory

Memory Cards OK OK

EM files OK OK

Changing file names OK Not possible

Reading file memory data OK Not possible

Deleting files OK OK

Coping files OK Not possible

Deleting/Creating subdirectories OK Not possible

Operation CX-Programmer Programming
Console

Create user program file.

CPU Unit

Programming
Device Programming

Console
Create I/O memory file

Memory Card

EM file memory

User
program

Memory Card

EM file memory

User
program

User
program

I/O
memory

I/O
memory

I/O
memory

Programming
Device

Programming
Console

CPU Unit

Create parameter file.

CPU Unit

Programming
Device

Programming
Console

Memory Card

EM file memory
Parameter
area

Parameter
area

rPa ameter
area
200

Manipulating Files Section 5-2
CX-Programmer Use the following procedure for file memory operations.

1,2,3... 1. Double-click the Memory Card icon in the Project Window with the CPU
Unit online. The Memory Card Window will be displayed.

2. To transfer from the CPU Unit to file memory, select the program area, I/O
memory area, or parameter area in the project work space, select Transfer
from the File Memory, and then select transfer to the Memory Card or to
EM file memory.

or To transfer from file memory to the CPU Unit, select file in file memory
and then drag it to the program area, I/O memory area, or parameter area
in the project work space and drop it.

Note Use project transfer operations to create and read symbol table files (SYM-
BOLS.SYM) and comment files (COMMENTS.CMT) on the CX-Programmer.

Programming Console

The following operations can be performed.

HMC-AP001 Memory Card Adapter

Memory Card

Computer's PC Card slot

CLR
000000 CT00

FUN SHIFT
CONT

#

0: Transfer
1: Verify

↓
0: Initialize
1: Delete

Item 1 Item 2 Item 3 Item 4 Item 5

0: Send 0: PLC to Memory Card Select OBJ, CIO, HR, WR,
AR, DM, EM, or STD.

Set transfer start and
end addresses.

Media type, file name

1: Memory Card to PLC Select OBJ, CIO, HR, WR,
AR, DM, EM, or STD.

Set transfer start and
end addresses.

Media type, file name

1: Verify Select OBJ, CIO, HR, WR,
AR, DM, EM, or STD.

Set comparison start and
end addresses.

Media type, file name
201

Manipulating Files Section 5-2
Note The file types are shown in the following table.

5-2-2 FINS Commands
The CPU Unit can perform the following file memory operations when it
receives the proper FINS command. These are similar to the Programming
Device functions.

FINS Commands via Host Link

A computer connected via a Host Link System can send a FINS command
with a Host Link header and terminator.

FINS Command from Another Network PLC

Another PLC on a network can send FINS command using CMND(490).

2: Initialize Enter 9713 (Memory Card)
or 8426 (EM file memory).

--- ---

3: Delete Select OBJ, CIO, HR, WR,
AR, DM, EM, or STD.

Media type, file name ---

Symbol File type

OBJ Program file (.OBJ)

CIO Data file (.IOM) CIO Area

HR HR Area

WR WR Area

AR Auxiliary Area

DM DM Area

EM0_ EM Area

STD Parameter file (.STD)

Item 1 Item 2 Item 3 Item 4 Item 5

CPU Unit

Host computer

FINS command

Memory Card

EM file memory

I/O
memory
User
program

Parame-
ter area

CPU Unit

I/O
memor y

User
program

Parame-
ter area

Memory Card

EM file memory

CMND
instruction

Another PLC on
the network

FINS command
202

Manipulating Files Section 5-2
Note A computer on an Ethernet Network can read and write file memory (Memory
Cards or EM file memory) on a CPU Unit through an Ethernet Unit. Data in
files can be exchanged if the host computer functions as an FTP client and
the CS/CJ-series PLC functions as an FTP server.

The following FINS commands can be used to perform a variety of functions,
including reading and writing files.

Note The time from the CPU Unit’s internal clock is used to date files created in file
memory with the 220A, 220B, 220C, and 2203 commands.

5-2-3 FREAD(700), FWRIT(701), and CMND(490)
The FWRIT(701) (WRITE DATA FILE) instruction can be used to create a data
file containing the specified I/O memory data in a Memory Card or EM file
memory. It can also add to or overwrite from any point in existing files.

The FREAD(700) (READ DATA FILE) instruction will read I/O memory data
from a specified location from a data file in a Memory Card or EM file memory
and write it to the specified portion of I/O memory. It can read from any point
in the specified file.

Note These instructions do not transfer the specified file, but rather the specified
amount of data beginning at the specified start position in the file.

Host computer (FTP client)

Ethernet Unit

Memory Card or
EM file memory

Computer to Memory Card

File

Memory Card to computer

File

FTP command

Ethernet

Memory Card or
EM file memory

Memory Card or
EM file memory

Command Name Description

2201 Hex FILE NAME READ Reads file memory data.

2202 Hex SINGLE FILE READ Reads a specified length of file data from a
specified position within a single file.

2203 Hex SINGLE FILE WRITE Writes a specified length of file data from a
specified position within a single file.

2204 Hex FILE MEMORY FOR-
MAT

Formats (initializes) the file memory.

2205 Hex FILE DELETE Deletes specified files stored in the file mem-
ory.

2207 Hex FILE COPY Copies files from one file memory to another
file memory.

2208 Hex FILE NAME CHANGE Changes a file name.

220A Hex MEMORY AREA FILE
TRANSFER

Transfers or compares data between the I/O
memory area and the file memory.

220B Hex PARAMETER AREA
FILE TRANSFER

Transfers or compares data between the
parameter area and the file memory.

220C Hex PROGRAM AREA FILE
TRANSFER

Transfers or compares data between the UM
(User Memory) area and the file memory.

2215 Hex CREATE/DELETE
SUBDIRECTORY

Creates and deletes subdirectories.
203

Manipulating Files Section 5-2
The CMND(490) (DELIVER COMMAND) instruction can be executed to issue
a FINS command to the CPU Unit itself to perform file operations. File opera-
tions such as file formatting, deletion, copying, and renaming can be per-
formed on files in the Memory Card or EM file memory (Not supported by CS-
series CS1 CPU Units that are pre-EV1).

FREAD(700)/FWRIT(701) Instructions
FREAD(700) and FWRIT(701) transfer data between I/O memory and file
memory. All CJ CPU Units can transfer binary data (.IOM files) and the V1
CPU Units can also transfer ASCII files (.TXT and .CSV files).

FREAD(700)/FWRIT(701): Transfers
between I/O memory and file memory

CPU Unit

FREAD/FWRIT
instruction

I/O memory

I/O memory

Memory Card

EM file memory

I/O memory

CMND(490):
(Not possible for CS-series CPU Units that are pre-EV1)

 File memory operations

CPU Unit

Memory Card

EM file memory

CMND
instruction

I/O memory

Memory Card

EM file memory

Operation

Operation

Name Mnemonic Description

READ DATA
FILE

FREAD(700) Reads specified data file data or data elements
to specified I/O memory.

WRITE DATA
FILE

FWRIT(701) Uses specified I/O memory area data to create
a specified data file.
204

Manipulating Files Section 5-2
Transferring ASCII Files
 (Not supported by CS-
series CS1 CPU Units that
are pre-EV1)

ASCII files can be transferred as well as binary files, so the third and fourth
digits of the instruction’s control word operand (C) indicate the type of data file
being transferred and the number of fields between carriage returns.

CX-Programmer V1.1 or Earlier Version:
Indirectly Setting the Control Word

When V1.1 or an earlier version of CX-Programmer is being used, ASCII files
cannot be transferred with FREAD(700) and FWRIT(701) if a constant is input
for the control word to specify the data type and carriage return treatment.
Only binary data with no carriage returns can be transferred if a constant is
used.

ASCII files can be transferred with FREAD(700) and FWRIT(701), however,
by indirectly setting the control word. Write the desired control word setting to
a word and specify that word as the control word in FREAD(700) or
FWRIT(701), as shown on the left in the following diagram.

Note The time from the CPU Unit’s internal clock is used to date files created in file
memory with FWRIT(701).

Only one file memory operation may be executed at a time, so FREAD(700)
and FWRIT(701) must not be executed when any of the following file memory
operations are being performed:

1,2,3... 1. Execution of FREAD(700) or FWRIT(701)

Bits in C Settings Programming Device
limitations

12 to 15 Data type
0: Binary (.IOM)
1: Non-delimited words (.TXT)
2: Non-delimited double-words (.TXT)
3: Comma-delimited words (.CSV)
4: Comma-delimited double-words (.CSV)
5: Tab-delimited words (.TXT)
6: Tab-delimited double-words (.TXT)

If CX-Programmer V1.1 or an
earlier version is being used,
only 0 Hex (.IOM files) can be
specified directly.
If CX-Programmer V1.2 or a
later version (or a Program-
ming Console) is being used,
the control word bits can be
set to between 0 and 6 Hex.

08 to 11 Carriage returns
0: No returns
8: Return every 10 fields
9: Return every 1 field
A: Return every 2 fields
B: Return every 4 fields
C: Return every 5 fields
D: Return every 16 fields

If CX-Programmer V1.1 or an
earlier version (or a Program-
ming Console) is being used,
only 0 Hex (no returns) can
be specified directly.

If CX-Programmer V1.2 or a
later version is being used,
the control word bits can be
set to 0 Hex or to between 8
and D Hex.

Execution
condition

File Memory
Operation Flag

CX-Programmer Versions V1.1 and Earlier

CX-Programmer Versions V1.2 and Later

Write #1800
to W000.

Specify W000
as C.

Execution
condition

File Memory
Operation Flag Specify #1800 as C.
205

Manipulating Files Section 5-2
2. Execution of CMND(490) to send a FINS command to the CPU Unit itself

3. Replacement of the entire program by Auxiliary Area control bit operations

4. Execution of a simple backup operation

Use the File Memory Operation Flag (A34313) for exclusive control of file
memory instructions to prevent them from being executed while another file
memory operation is in progress.

When FREAD(700) is being executed, the File Read Error Flag (A34310) will
be turned ON and the instruction won’t be executed if the specified file con-
tains the wrong data type or the file data is corrupted. For text or CSV files,
the character code must be hexadecimal data and delimiters must be posi-
tioned every 4 digits for word data and every 8 digits for double-word data.
Data will be read up to the point where an illegal character is detected.

Related Auxiliary Bits/Words

Name Address Operation

Memory Card Type A34300 to
A34302

Indicates the type of Memory Card, if any, that is
installed.

EM File Memory For-
mat Error Flag

A34306 ON when a format error occurs in the first EM
bank allocated for file memory. OFF when format-
ting is completed normally.

Memory Card For-
mat Error Flag

A34307 ON when the Memory Card is not formatted or a
formatting error has occurred.

File Write Error Flag A34308 ON when an error occurred when writing to the
file.

File Write Impossi-
ble Flag

A34309 ON when the data couldn’t be written because the
file was write-protected or there was insufficient
free memory.

File Read Error Flag A34310 ON when a file could not be read because its data
was corrupted or if it contains the wrong data type.

No File Flag A34311 ON when data could not be read because the
specified file doesn’t exist.

File Memory Opera-
tion Flag

A34313 ON for any of the following:
The CPU Unit is processing a FINS command
sent to itself using CMND(490).
FREAD(700) or FWRIT(701) is being executed.
The program is being overwritten using an Auxil-
iary Area control bit.
A simple backup operation is being performed.

Accessing File Flag A34314 ON when file data is actually being accessed.

Memory Card
Detected Flag

A34315 ON when a Memory Card has been detected.
(Not supported by CS-series CS1 CPU Units that
are pre-EV1)

Number of Items to
Transfer

A346 to
A347

These words indicate the number of words or
fields remaining to be transferred (32 bits).
When a binary (.IOM) file is being transferred, this
number is decremented each time a word is read.

When a text or CSV file is being transferred, this
number is decremented each time a field is trans-
ferred.
206

Manipulating Files Section 5-2
CMND(490): DELIVER COMMAND
CMND(490) can be used to issue a FINS command to the local CPU Unit
itself to perform file memory operations such as formatting or deleting files.
Make the following settings in CMND(490)’s control words when issuing a file-
memory FINS command to the local PLC:

1,2,3... 1. Set the destination network address to 00 (local network) in C+2.

2. Set the destination unit address to 00 (PLC’s CPU Unit) and the destination
node to 00 (within local node) in C+3.

3. Set the number of retries to 0 in C+4. (The number of retries setting is in-
valid, so set it to 0.)

FINS Commands Related
to File Memory

Refer to ,!�!��"������%%���� for information on FINS commands.

Note There are other FINS commands related to file memory that are not shown in
the following table which can be executed. Refer to the Communications Com-
mand Reference Manual (W342) for details on FINS commands.

CMND(490) cannot be executed to the local CPU Unit if another CMND(490)
instruction is being executed to another CPU Unit, FREAD(700) or
FWRIT(701) is being executed, the program is being replaced by an Auxiliary
Area control bit operation, or a simple backup operation is being executed. Be
sure to include the File Memory Operation Flag (A34313) as a normally
closed condition to prevent CMND(490) from being executed while another
file memory operation is in progress.

If CMND(490) cannot be executed for the local CPU Unit, the Error Flag will
be turned ON.

Related Auxiliary Bits/Words

Name Address Operation

File Memory Opera-
tion Flag

A34313 ON for any of the following:
• The CPU Unit is processing a FINS command sent to itself using CMND(490).
• FREAD(700) or FWRIT(701) is being executed.
• The program is being overwritten using an Auxiliary Area control bit.
• A simple backup operation is being performed.

Memory Card
Detected Flag

A34315 ON when a Memory Card has been detected. (Not supported by CS-series CS1 CPU
Units that are pre-EV1)
207

Manipulating Files Section 5-2
The following example shows how to use CMND(490) to create a subdirectory
in the Memory Card.

Note There are other FINS commands that can be sent to the local PLC in addition
to the ones related to file memory operations that are listed in the table above.
The File Memory Operation Flag must be used to prevent simultaneous exe-
cution of these other FINS commands, too.

5-2-4 Replacement of the Entire Program During Operation
(Not supported by CS-series CS1 CPU Units that are pre-EV1)

The entire program can be replaced during operation (RUN or MONITOR
mode) by turning ON the Replacement Start Bit (A65015). The specified file
will be read from the Memory Card and it will replace that program will replace
the executable program at the end of the current cycle. The replacement Pro-
gram Password (A651) and Program File Name (A654 to A657) must be

Network Instruction
Enabled Flag

(for port 7)

File Memory
Operation Flag

When 000000 and A20207 are ON and A34313 is
OFF, CMND(490) issues FINS command 2215
(CREATE/DELETE SUBDIRECTORY) is sent to
the local CPU Unit and the response is stored in
D00100 and D00101.

In this case, the FINS command creates a subdi-
rectory named "CS1" within the OMRON" directory
in the CPU Unit's Memory Card. The response is
composed of the 2-byte command code (2215) and
the 2-byte response code.

Command code: 2215 Hex (CREATE/DELETE SUBDIRECTORY)
Disk number: 8000 Hex (Memory Card)
Parameter: 0000 Hex (Create subdirectory.)

Subdirectory name: CS1@@@@@.@@@
 (@: a space)

Directory length: 0006 Hex (6 characters)

Directory path: \OMRON

Number of bytes of command data: 001A Hex (26 bytes)
Number of bytes of response data: 0004 Hex (4 bytes)
Destination address: 0000 Hex (local network)

 00 Hex (local node) and 00 Hex (CPU Unit)
Response requested, communications port 7, 0 retries
Response monitor time: FFFF Hex (6,553.5 s)
208

Manipulating Files Section 5-2
recorded in advance and the specified program file must exist on the Memory
Card in order to replace the program during operation.

The program can also be replaced when program execution is stopped (PRO-
GRAM mode) by turning ON the Replacement Start Bit from a Programming
Device.

Note The replacement program file cannot be read from EM file memory.

The Replacement Start Bit (A65015) can be turned ON at any location (pro-
gram address) in the program. The CPU Unit will execute the instructions
remaining in the cycle after the Replacement Start Bit goes from OFF to ON.

The program will not be executed while the program is being replaced. After
the program has been replaced, operation will be started again just as if the
CPU Unit were switched from PROGRAM mode to RUN or MONITOR mode.

The program will be replaced at the end of the cycle in which the Replace-
ment Start Bit was turned from OFF to ON, i.e., after END(001) is executed in
the last task in the program.

User program

CPU Unit

Memory Card

Replacement

The entire program
is replaced.

Entire user program

Replacement Start Bit (A65015)
turned from OFF to ON.

Replacement Program
File Name

Specifies
program

Normal processing

Normal processing

Execution
condition

Replacement
Start Bit

The CPU Unit will
execute the in-
structions remain-
ing in the cycle af-
ter the Replace-
ment Start Bit is
turned ON.

(In the last task)
209

Manipulating Files Section 5-2
Note 1. Turn ON the IOM Hold Bit (A50012) if you want to maintain the status of
I/O memory data through the program replacement.

Turn ON the Forced Status Hold Bit (A50013) if you want to maintain the
status of force-set and force-reset bits through the program replacement.

2. If the IOM Hold Bit (A50012) is ON before the program is replaced, the sta-
tus of bits in I/O memory will be maintained after program replacement. Be
sure that external loads will operate properly with the same I/O memory
data.

Likewise, if the Forced Status Hold Bit (A50013) is ON before the program
is replaced, the status of force-set and force-reset bits will be maintained
after program replacement. Be sure that external loads will operate prop-
erly with the same force-set and force-reset bits.

Replacement File The program file specified in the Program File Name (A654 to A657) will be
read from the Memory Card and will replace the existing program at the end of
the cycle in which the Replacement Start Bit (A65015) is turned from OFF to
ON.

Conditions Required for
Program Replacement

The following conditions are required in order to replace the program during
operation.

� ��
�������������#����"'>'>$������

��#��		
��	��'?>��

� ��
� �������� ��
� ��
����
�� ��� 	�
� �������� ��
� &��
� #����� "'?>/� 	�
'?>;$�
!��	�����	�
�(
����� ���@�����	����
�	����

� ��
�(
����� ���������

���
	
�	
�����	�
� �)�)��	��"'A/A�>�*&$

� &����	��
��������%
�������
��

� &����
��
�������
��	�������
��
����
!
��	
���"'A/A�A�*��$

� ��	�������	��
����#��		
��	��	�
���������'�
��

� ��
����
�������	�����%����
��"����
!���
����	�������	��
����	�����
��
�
�����	�
� ,0��������
��	��	�
��B �$

Note The program may be transferred in any operating mode.

CPU Operation during
Program Replacement

The CPU Unit’s operation will be as follows during program replacement:

� ��������
!
��	���5��	���
�

� ��
�	��
�����	�����5�&������	�����

Operations Continuing
during and after Program
Replacement

When the IOM Hold Bit (A50012) is ON, the data in the following memory
areas will be maintained: the CIO Area, Work Area (W), Timer Completion
Flags (T), Index Registers (IR), Data Registers (DR), and the current EM bank
number.

Note Timer PVs will be cleared during program replacement.

If the IOM Hold Bit is ON when the program is transferred, loads that were
being output before program replacement will continue to be output after
replacement. Be sure that external loads will operate properly after program
replacement.

The status of force-set and force-reset bits will be maintained through the pro-
gram replacement if the Forced Status Hold Bit (A50013) is ON.

Interrupts will be masked.

File File name and
extension

Specifying the replacement file name (********)

Program file 								.OBJ Write the replacement program file name to A654
through A657 before program replacement.
210

Manipulating Files Section 5-2
If data tracing is being performed, it will be stopped.

Instruction conditions (interlocks, breaks, and block program execution) will be
initialized.

Differentiation Flags will be initialized whether the IOM Hold Bit is ON or OFF.

Operations after
Program Replacement

The status of the cyclic tasks depends upon their operation-start properties.
(Their status is the same as it would be if the PLC were switched from PRO-
GRAM to RUN/MONITOR mode.)

The First Cycle Flag (A20011) will be ON for one cycle after program execu-
tion resumes. (The status is the same as it would be if the PLC were switched
from PROGRAM to RUN/MONITOR mode.)

Time Required for
Program Replacement

Related Auxiliary Bits/Words

Size of entire program Peripheral servicing time
set in PLC Setup

Approx. time required for
program replacement

60 Ksteps Default (4% of cycle time) 6 s

250 Ksteps 25 s

Name Address Operation

File Memory Operation Flag A34313 ON for any of the following:
The CPU Unit has sent a FINS command to itself using CMND(490).
FREAD(700) or FWRIT(701) are being executed.

The program is being overwritten using an Auxiliary Area control bit
(A65015).
A simple backup operation is being performed.

Memory Card Detected Flag
(Not supported by CS-series
pre-EV1 CS1 CPU Units)

A34315 ON when a Memory Card has been detected.

IOM Hold Bit A50012 When this bit is ON, the contents of I/O memory are retained through pro-
gram replacement.

Forced Status Hold Bit A50013 When this bit is ON, the status of force-set and force-reset bits is main-
tained through program replacement.

Replacement Completion Code
(Not supported by CS-series
pre-EV1 CS1 CPU Units)

A65000 to
A65007

Codes for normal program replacement (A65014 OFF):
01 Hex: The program file (.OBJ) replaced the program.

Codes for incomplete program replacement (A65014 ON):
00 Hex: A fatal error occurred.
01 Hex: A memory error occurred.
11 Hex: The program is write-protected.
12 Hex: The program password in A651 is incorrect.
21 Hex: A Memory Card is not installed.
22 Hex: The specified file does not exist.
23 Hex: The specified file is too large (memory error).
31 Hex: One of the following operations was being performed:

• A file memory operation was being performed.
• The program was being written.
• The operating mode was being changed.

Replacement Error Flag
(Not supported by CS-series
pre-EV1 CS1 CPU Units)

A65014 Turned ON when an error occurred while trying to replace the program
after A65015 was turned from OFF to ON.
Turned OFF the next time that A65015 is turned from OFF to ON again.
211

Manipulating Files Section 5-2
Example Program 1

Store program files ABC.OBJ and XYZ.OBJ in the Memory Card and select
one program or the other depending upon the value of D00000. Set D00000
to #1234 when selecting ABC.OBJ or set it to #5678 when selecting
XYZ.OBJ.

Replacement Start Bit
(Not supported by CS-series
pre-EV1 CS1 CPU Units)

A65015 If this bit has been enabled by the setting the Program Password (A651)
to A5A5 Hex, program replacement will start when this bit is turned from
OFF to ON. Do not turn this bit from OFF to ON again during program
replacement.
This bit is automatically turned OFF when program replacement is com-
pleted (normally or with an error) or the power is turned ON.
The status of this bit can be read from a Programming Device, PT, or host
computer to determine whether program replacement has been com-
pleted or not.

Program Password
(Not supported by CS-series
pre-EV1 CS1 CPU Units)

A651 Write the password to this word to enable program replacement.
A5A5 Hex: Enables the Replacement Start Bit (A65015).
Other value: Disables the Replacement Start Bit (A65015).
This bit is automatically turned OFF when program replacement is com-
pleted (normally or with an error) or the power is turned ON.

Program File Name
(Not supported by CS-series
pre-EV1 CS1 CPU Units)

A654 to
A657

Name Address Operation

Before starting program replacement, write the file name of the
replacement program file in these words in ASCII. Just write the
8-character filename; the .OBJ extension is added automatically.
Write the characters in order from A654 (most significant byte first). If
the file name has fewer than 8 characters, pad the remaining bytes with
space codes (20 Hex). Do not include any NULL characters or spaces
within the file name itself.
The following example shows the data for the program file ABC.OBJ:
212

Manipulating Files Section 5-2
Start and execute another task to perform any processing required before pro-
gram replacement or IOM Hold Bit processing.

First Cycle Flag
MOV

← Program version
← Version storage area

Execution
condition

No File Flag

Replacement
Start Bit

Writes the file name
 "ABC" in A654 to
A657.

Writes the file name
 "XYZ" in A654 to
A657.

Main processing program

Main Task (Cyclic task number 0)
213

Manipulating Files Section 5-2
Example Program 2

Store program files for several devices and the program file for automatic
transfer at startup (AUTOEXEC.OBJ) in a Memory Card. When the PLC is
turned ON, the automatic transfer at startup file is read and that program is
replaced later with a program file for a different device.

5-2-5 Automatic Transfer at Startup
Automatic transfer at startup is used to read the user program, parameters,
and I/O memory data from a Memory Card to the CPU Unit when the power is
turned ON.
The following files can be read automatically to CPU Unit memory.

Note This function cannot be used to read EM file memory.

Always ON Flag

Task protecting data during program replacement
(Cyclic task number 31, standby status at startup)

Processing to pro-
tect data before pro-
gram replacement
begins

IOM Hold Bit

Outputs to required
loads during pro-
gram replacement.

First Cycle Flag

Replacement
Start Bit

AUTOEXEC.OBJ

Processing that determines
the type of device connected
and stores the corresponding
file name. In this example,
the file name "ABC" is written
in A654 to A657.

Memory Card
Detected Flag

ABC.OBJ

Overwrite
214

Manipulating Files Section 5-2
Note 1. If the data contained in AUTOEXEC.IOM and ATEXECDM.IOM overlap,
the data in ATEXECDM.IOM will overwrite any overlapping data trans-
ferred from AUTOEXEC.IOM since ATEXECDM.IOM is written later.

2. The program file (AUTOEXEC.OBJ) and parameter file (AUTOEXEC.STD)
must be on the Memory Card. Without these files, automatic transfer will
fail, a memory error will occur, and A40115 (Memory Error Flag: fatal error)
will turn ON. (It is not necessary for the I/O memory file (AUTOEXEC.IOM)
to be present.)

3. It is possible to create the AUTOEXEC.IOM, ATEXECDM.IOM, and ATEX-
ECE@.IOM files from a Programming Device (Programming Console or
CX-Programmer), with starting addresses other than D20000, D00000,
and E@_00000 respectively. The data will be written beginning with the
correct starting address anyway, but do not specify other starting address-
es.

4. If DIP switch pin 7 is turned ON and pin 8 is turned OFF to use the simple
backup function, the simple backup function will take precedence even if
pin 2 is also ON. In this case, the BACKUP@@ files will be transferred to
the CPU Unit but the automatic transfer at startup files will not be trans-
ferred. (Not supported by CS-series CS1 CPU Units that are pre-EV1.)

5. The automatic transfer at startup function can be used together with the
program replacement function. The Replacement Start Bit (A65015) can
be turned ON from program that is automatically transferred at startup to
replace it with another program.

File File name At startup Required for
automatic transfer

Program File AUTOEXEC.OBJ The contents of this file are automatically transferred and
overwrite the entire user program including CPU Unit task
attributes.

Required on Memory
Card.

Data File AUTOEXEC.IOM DM words allocated to Special I/O Units, CPU Bus Units,
and Inner Boards (CS Series only).

The contents of this file are automatically transferred to
the DM Area beginning at D20000 when power is turned
ON. (See note 1.)

Not required on
Memory Card.

ATEXECDM.IOM General-purpose DM words

The contents of this file are automatically transferred to
the DM Area beginning at D00000 when power is turned
ON. (Not supported by CS-series CS1 CPU Units that are
pre-EV1) (See note 1.)

ATEXECE@.IOM General-purpose DM words
The contents of this file are automatically transferred to
the EM Area beginning at E@_00000 when power is
turned ON. (Not supported by CS-series CS1 CPU Units
that are pre-EV1)

Parameter Area
File

AUTOEXEC.STD The contents of this file are automatically transferred and
overwrite all initial settings data in the CPU Unit.

Required on Memory
Card.
215

Manipulating Files Section 5-2
Procedure

1,2,3... 1. Turn OFF the PLC power supply.

2. Turn ON DIP switch pin 2 on the front panel of the CPU Unit. Be sure that
pins 7 and 8 are both OFF.

Note The simple backup function will take precedence over the automat-
ic transfer at startup function, so be sure that pins 7 and 8 are OFF.

3. Insert a Memory Card containing the user program file (AUTOEXEC.OBJ),
parameter area file (AUTOEXEC.STD), and/or the I/O memory files (AU-
TOEXEC.IOM, ATEXECDM.IOM, and ATEXECE@.IOM) created with a
CX-Programmer. (The program file and parameter area file must be on the
Memory Card. The I/O memory files are optional.)

4. Turn ON the PLC power supply.

Note Automatic Transfer Failure at Startup
If automatic transfer fails at startup, a memory error will occur, A40115 will
turn ON, and the CPU Unit will stop. If an error occurs, turn OFF the power to
clear the error. (The error cannot be cleared without turning OFF the power.)

DIP Switch on the Front
Panel of the CPU Unit

CPU Unit

I/O memory

Parameter
data

User program

Write at startup

Front panel DIP switch pin 2 ON

Memory Card

• User program file (AUTOEXEC.OBJ) - Re-
quired

• Parameter area file (AUTOEXEC.STD) -
Required

• I/O memory file (AUTOEXEC.IOM, ATEX
ECDM.IOM, ATEXECE@.IOM) - Not re-
quired

Pin(s) Name Setting

2 Automatic transfer at
startup pin

ON: Execute automatic transfer at startup.
OFF: Do not execute automatic transfer at startup.

7 and 8 Simple backup pins Turn OFF both pins.
216

Manipulating Files Section 5-2
Related Auxiliary Bits/Words

5-2-6 Simple Backup Function
This function is not supported by CS-series CS1 CPU Units that are pre-EV1.

Backing Up Data from the CPU Unit to the Memory Card
To backup data, turn ON pin 7 on the CPU Unit’s DIP switch, press and hold
the Memory Card Power Supply Switch for three seconds. The backup func-
tion will automatically create backup files and write them to the Memory Card.
The backup files contain the program, parameter area data, and I/O memory
data. This function can be executed in any operating mode.

Restoring Data from the Memory Card to the CPU Unit
To restore the backup files to the CPU Unit, check that pin 7 is ON and turn
the PLC’s power OFF and then ON again. The backup files containing the
program, parameter area data, and I/O memory data will be read from the
Memory Card to the CPU Unit.

Note 1. The backup function will override the automatic transfer at startup function,
so the backup files will be read to the CPU Unit when the PLC is turned ON
even if pin 2 of the DIP switch is ON.

2. Data will not be read from the Memory Card to the CPU Unit if pin 1 of the
DIP switch is ON (write-protecting program memory).

3. When the backup files are read from the Memory Card by the backup func-
tion, the status of I/O memory and force-set/force-reset bits will be cleared
unless the necessary settings are made in the Auxiliary Area and PLC Set-
up.

If the IOM Hold Bit (A50012) is ON and the PLC Setup is set to maintain
the IOM Hold Bit Status at Startup when the backup files are written, the

Name Address Setting

Memory Error Flag
(Fatal error)

A40115 ON when an error occurred in memory or there was an error in automatic
transfer from the Memory Card when the power was turned on (automatic
transfer at start-up).
The CPU Unit will stop and the ERR/ALM indicator on the front of the CPU
Unit will light.

Note: A40309 will be turned ON if the error occurred during automatic trans-
fer at startup. (The error cannot be cleared in this case.)

Memory Card Start-up
Transfer Error Flag

A40309 ON when automatic transfer at start-up has been selected and an error
occurs during automatic transfer (DIP switch pin 2 ON). An error will occur if
there is a transfer error, the specified file does not exist, or the Memory Card
is not installed.
Note: The error can be cleared by turning the power off. (The error cannot

be cleared while the power is on.)

Pin 7: ON

Memory Card

Press and hold the
Memory Card Power
Switch for three seconds.

(This example shows a
CS-series CPU Unit.)
217

Manipulating Files Section 5-2
status of I/O memory data will be maintained when data is read from the
Memory Card.

If the Forced Status Hold Bit (A50013) is ON and the PLC Setup is set to
maintain the Forced Status Hold Bit Status at Startup when the backup
files are written, the status of force-set and force-reset bits will be main-
tained when data is read from the Memory Card.

4. A CS1-H, CJ1-H, or CJ1M CPU Unit will remain in PROGRAM mode after
the simple backup operation has been performed and cannot be changed
to MONITOR or RUN mode until the power supply has been cycled. After
completing the backup operation, turn OFF the power supply to the CPU
Unit, changes the settings of pin 7, and then turn the power supply back
ON.

Comparing Data in the Memory Card and CPU Unit
To compare the backup files in the Memory Card with the data in the CPU
Unit, turn OFF pin 7 on the CPU Unit’s DIP switch, and press and hold the
Memory Card Power Supply Switch for three seconds. The backup function
will compare the program, parameter area data, and I/O memory data in the
Memory Card with the corresponding data in the CPU Unit. This function can
be executed in any operating mode.

The following table provides a summary of the simple backup operations.

Note 1. Refer to Verifying Backup Operations with Indicators on page 221 for de-
tails on the results of read, write, and compare operations.

2. Refer to 5-3-2 Operating Procedures for Memory Cards for guidelines on
the time required for Memory Card backup operations.

Backing up data to the Memory Card

Memory Card
Power Switch CPU Unit

Program

I/O memory

Parameter
area

Pin 7: ON

Restoring data from the Memory Card

Power ON

CPU Unit

Program

I/O memory

Parameter
area

Pin 7: ON

Comparing data to the Memory Card

Memory Card
Power Switch CPU Unit

Program

I/O memory

Parameter
area

Pin 7: OFF

Memory
Card

Memory
Card

Memory
CardCompare

Backup operation Pin
status

Procedure

Pin 7

Backing up data from the CPU
Unit to the Memory Card

ON Press and hold the Memory Card
Power Switch for three seconds.

Restoring data from the Memory
Card to the CPU Unit

ON Turn the PLC OFF and ON again.
(See note 1.)

Comparing data between the
CPU Unit and the Memory Card

OFF Press and hold the Memory Card
Power Switch for three seconds.
218

Manipulating Files Section 5-2
Backup Files

Data Files

Note 1. The Completion Flags and PVs are backed up.

2. The @ represents the bank number and the number of banks depends
upon the CPU Unit being used.

When the BACKUPE@.IOM files in the Memory Card are restored to the
CPU Unit, the files are read in order beginning with bank 0 and ending with
the maximum bank number in the CPU Unit. Excess BACKUPE@.IOM files
will not be read if the number of banks backed up exceeds the number of
banks in the CPU Unit. Conversely, any remaining EM banks in the CPU
Unit will be left unchanged if the number of banks backed up is less than
the number of banks in the CPU Unit.

If a BACKUPE@.IOM file is missing (for example: 0, 1, 2, 4, 5, 6), only the
consecutive files will be read. In this case, data would be read to banks 0,
1, and 2 only.

3. The EM Area data will be backed up as binary data. EM banks that have
been converted to file memory will be backed up along with EM banks that
have not.

EM file memory can be restored to another CPU Unit’s EM Area only if the
BACKUPE@.IOM files are consecutive and the number of backed-up EM
banks matches the number of banks in the CPU Unit. If the BACK-
UPE@.IOM files are not consecutive or the number of EM banks does not
match the number of banks in the CPU Unit, the EM file memory will revert
to its unformatted condition and the files in file memory will be invalid. (The
regular EM Area banks will be read normally.)

4. Normally, the contents of the CIO Area, WR Area, Timer Completion Flags,
Timer PVs, and the status of force-set/force-reset bits will be cleared when
the PLC is turned ON and BACKUPIO.IOR is read from the Memory Card.

File name and
extension

Data area and range of
addresses stored

Backup from
I/O memory to
Memory Card
(creating files)

Restore from
Memory Card
to I/O memory

Comparing
Memory Card
to I/O memory

Files required
when

restoring data

CPU Unit CS/CJ CS1/
CJ1

CS1-H/
CJ1-H

BACKUP.IOM DM D20000 to
D32767

Yes Yes Yes --- Required in
Memory Card

BACKUPIO.IOR CIO 0000 to 6143
(Including forced
bit status.)

Yes ---4 Yes --- Required in
Memory Card

WR W000 to W511
(Including forced
bit status.)

Yes ---4 Yes ---

HR H000 to H511 Yes Yes Yes ---

AR A000 to A447 Yes --- --- ---

A448 to A959 Yes Yes Yes ---

Timer1 T0000 to T4095 Yes Yes4 Yes ---

Counter1 C0000 to C4095 Yes Yes Yes ---

BACKUPDM.IOM DM D00000 to
D19999

Yes Yes Yes --- Required in
Memory Card

BACKUPE@.IOM2,3 EM E@_00000 to
E@_32767

Yes Yes Yes --- Required in
Memory Card
(must match
CPU Unit)
219

Manipulating Files Section 5-2
If the IOM Hold Bit (A50012) is ON and the PLC Setup is set to maintain
the IOM Hold Bit Status at Startup when the backup files are written, the
status of I/O memory data will be maintained when data is read from the
Memory Card.

If the Forced Status Hold Bit (A50013) is ON and the PLC Setup is set to
maintain the Forced Status Hold Bit Status at Startup when the backup
files are written, the status of force-set and force-reset bits will be main-
tained when data is read from the Memory Card.

 Program Files

Parameter Files

Unit/Board Backup Files (CS1-H, CJ1-H, or CJ1M CPU Unit Only)

Note 1. Unit addresses are as follows:
CPU Bus Units: Unit number + 10 Hex
Special I/O Units: Unit number + 20 Hex
Inner Board: E1 Hex

2. An error will not occur in the CPU Unit even if this file is missing when data
is transferred from the Memory Card to I/O memory, but an error will occur
in the Unit or Board if the data is not restored. Refer to the operation man-
ual for the specific Unit or Board for details on Unit or Board errors.

File name and
extension

Contents Backup from
I/O memory to
Memory Card
(creating files)

Restore from
Memory Card
to I/O memory

Comparing
Memory Card
to I/O memory

Files required
when

restoring data

CPU Unit CS/CJ

BACKUP.OBJ Entire user program Yes Yes Yes Required in
Memory Card

File name and
extension

Contents Backup from
I/O memory to
Memory Card
(creating files)

Restore from
Memory Card
to I/O memory

Comparing
Memory Card
to I/O memory

Files required
when

restoring data

CPU Unit CS/CJ

BACKUP.STD PLC Setup

Registered I/O tables
Routing tables
CPU Bus Unit setup

Etc.

Yes Yes Yes Required in
Memory Card

File name and
extension

Contents Backup from
I/O memory to
Memory Card
(creating files)

Restore from
Memory Card
to I/O memory

Comparing
Memory Card
to I/O memory

Files required
when

restoring data

CPU Unit CS1-H, CJ1-H, or CJ1M CPU Unit only

BACKUP@@.PRM
(where @@ is the
unit address of the
Unit/Board being
backed up)

Backup data from the Unit or
Board with the specified unit
address (Specific contents
depends on the Unit or
Board.)

Yes Yes Yes Required in
Memory Card
(See note 2.)
220

Manipulating Files Section 5-2
Verifying Backup Operations with Indicators
The status of the Memory Card Power (MCPWR) indicator shows whether a
simple backup operation has been completed normally or not.

MCPWR Indicator

(This example shows a
CS-series CPU Unit.)

Backup operation Normal completion
(See note 1.)

Error occurred

MCPWR status MCPWR status Error

Backing up data from the
CPU Unit to the Memory
Card

Lit � Remains lit while the
Memory Card Power Switch
is pressed. � Flashes once.
� Lit while writing. � OFF
after data is written.

Lit � Remains lit while the
Memory Card Power Switch
is pressed. � Remains
flashing. � Lights when the
Memory Card Power Switch
is pressed.

No files will be created with
the following errors:
Insufficient Memory Card
capacity (See note 2.)
Memory error in CPU Unit
I/O bus error (when writing
data to a Unit or Board, CS1-
H or CJ1-H CPU Units only)

Restoring data from the
Memory Card to the CPU
Unit

Lit when power is turned ON.
� Flashes once. � Lit while
reading. � OFF after data is
read.

Lit when power is turned ON.
� Flashes five times. �
Goes OFF.

Data won’t be read with the
following errors:
Program in Memory Card
exceeds CPU Unit capacity
Required backup files do not
exist in Memory Card.

Program can’t be written
because it is write-protected
(Pin 1 of the DIP switch is
ON.)

Lit when power is turned ON.
� Flashes once. � Lit while
reading. � Flashes three
times. � OFF after data is
read.

Caution: Data will be read
with the following error.

EM files and CPU Unit EM
banks do not match (non-
consecutive bank numbers
or max. bank number mis-
match).
221

Manipulating Files Section 5-2
Note 1. When the backup operation is completed normally, power to the Memory
Card will go OFF when the MCPWR indicator goes OFF. If the Memory
Card will be used again, press the Memory Card Power Switch to supply
power and execute the desired operation.

2. When data is written for a simple backup operation from a CS1-H, CJ1-H,
or CJ1M CPU Unit, errors for insufficient Memory Card capacity can be
checked in A397 (Simple Backup Write Capacity). If A397 contains any
value except 0000 Hex after the write operation has been executed, the
value will indicate the capacity that is required in the Memory Card in
Kbytes.

3. With CS1-H, CJ1-H, or CJ1M CPU Units, the backup files for Units and
Boards are also compared.

Comparing data between the
CPU Unit and the Memory
Card

Lit � Remains lit while the
Memory Card Power Switch
is pressed. � Flashes once.
� Lit while comparing. �
OFF after data is compared.

Lit � Remains lit while the
Memory Card Power Switch
is pressed. � Remains
flashing. � Lights when the
Memory Card Power Switch
is pressed.

The following comparison
errors can occur (See note
3.):
Memory Card and CPU Unit
data do not match.

Required backup files do not
exist in Memory Card.
EM files and CPU Unit EM
banks do not match (non-
consecutive bank numbers
or max. bank number mis-
match).
Memory error in CPU Unit
I/O bus error (when compar-
ing data to a Unit or Board,
CS1-H or CJ1-H CPU Units
only)

Common to all three backup
operations.

--- Reading:
Flashes five times. � Goes
OFF.

Writing or comparing:
Remains flashing.� Lights
when the Memory Card
Power Switch is pressed.

Memory Card access error
(format error or read/write
error)

Backup operation Normal completion
(See note 1.)

Error occurred

MCPWR status MCPWR status Error
222

Manipulating Files Section 5-2
Related Auxiliary Bits/Words

Note These flags are related for the CS1-H, CJ1-H, or CJ1M CPU Units because
the CPU Unit will automatically using an available communications port when
writing or comparing data for a Memory Card.

Backing Up Board and Unit Data
This function is supported only by CS1-H, CJ1-H, or CJ1M CPU Units.

Introduction
The following data is backed up from the CPU Unit by the CS1 and CJ1 CPU
Units for the simple backup operation: User program, parameter area, entire
I/O memory. In addition to the above data, the following data is also backed up
for the CS1-H, CJ1-H, or CJ1M CPU Units: Data from specific Units and
Boards mounted to the PLC.

Outline
When the simple backup operation is used for a CS1-H, CJ1-H, or CJ1M CPU
Unit, a Unit/Board backup file containing data from specific Units and Boards

Name Address Description

File Memory Operation Flag A34313 ON when any of the following are being performed. OFF when execution
has been completed.

• Memory Card detection
• CMND instruction executed for local CPU Unit
• FREAD/FWRIT instructions

• Program replacement via special control bits
• Simple backup operation
Wiring data to or verifying the contents of the Memory Card is not possi-
ble while this flag is ON.

EM File Memory Starting Bank A344 When the CPU Unit starts reading from the Memory Card, it references
this value. If the maximum EM bank number of the BACKUPE@.IOM files
(maximum consecutive bank number counting from 0) matches the maxi-
mum bank number of the CPU Unit, the EM area will be formatted based
on the value in this word. If the maximum EM bank numbers do not
match, the EM Area will revert to its unformatted condition.

Network Communications
Instruction Enabled Flags (CS1-
H, CJ1-H, or CJ1M CPU Units
only) (See note.)

A20200 to
A20207

• Turns OFF when writing or comparing Memory Card data begins.

• Turn ON when writing or comparing Memory Card data has been com-
pleted.

Unit and Board data cannot be written or compared if all of the Network
Communications Instruction Enabled Flags are OFF when Memory Card
write or compare operations are started and an error will occur if this is
attempted.

Network Communications Com-
pletion Code (CS1-H, CJ1-H, or
CJ1M CPU Units only) (See
note.)

A203 to
A210

Provide the results of communications with the Unit or Board when Mem-
ory Card write or compare operations are performed.

Network Communications Error
Flags (CS1-H, CJ1-H, or CJ1M
CPU Units only) (See note.)

A21900 to
A21907

• Turns ON is an error occurs in communications with the Unit or Board
when Memory Card write or compare operations are performed.

• Remains OFF (or turns OFF) is no error occurs in communications with
the Unit or Board when Memory Card write or compare operations are
performed.

Simple Backup Write Capacity
(CS1-H, CJ1-H, or CJ1M CPU
Units only)

A397 Provides the data capacity in Kbytes that would be required on the Mem-
ory Card when writing fails for a simple backup operation, indicating that
a write error occurred because of insufficient capacity.
0001 to FFFF Hex: Write error (Indicates required Memory Card capacity
between 1 and 65,535 Kbytes.) (Cleared to 0000 Hex when successful
write is performed.)
0000 Hex: Write completed normally.
223

Manipulating Files Section 5-2
is written to the Memory Card. The data is backed up separately for each Unit
and Board.

Application
This function can be used to back up data for the entire PLC, including the
CPU Unit, DeviceNet Units, Serial Communications Units/Boards, etc. It can
also be used for Unit replacement.

Unit/Board Backup Files
The data from each Unit and Board is stored in the Memory Card using the
following file names: BACKUP@@.PRM. Here, “@@” is the unit address of the
Unit or Board in hexadecimal.

Note Unit addresses are as follows:
CPU Bus Units: Unit number + 10 Hex
Special I/O Units: Unit number + 20 Hex
Inner Board: E1 Hex

These files are also used when reading from the Memory Card or comparing
Memory Card data.

Applicable Units and Boards
For Unit and Board data to be backed up, the Unit/Board must also support
the backup function. Refer to the operation manual for the Unit/Board for
details on support.

The following Units and Boards are supported as of July 2001.

Note Data from the Units and Boards listed above will be automatically backed up
for the simple backup operation. There is no setting available to include or
exclude them.

Procedure
The procedure for the simple backup operation is the same regardless of
whether or not data is being backed up from specific Units and Boards
(including writing, reading, and comparing).

DeviceNet Unit or other
specific Unit/Board

Write
Read
Compare

Memory Card power
supply switch

CS1-H or CJ1-H CPU Unit

Memory Card

All data

Simple
backup
data

Unit/Board Model numbers Backup data
(for CS1-H or CJ1-H CPU Unit only)

DeviceNet Unit CS1W-DRM21-V1
CJ1W-DRM21

Device parameters (all data in EEPROM in
the Unit)
(Although this is the same data as is backed
up from the Memory Card backup function
supported by the Unit or the DeviceNet Con-
figuration (Ver. 2.0), there is no file compati-
bility.

Serial Communi-
cations Unit

CS1W-SCU21-V1
CJ1W-SCU41

Protocol macro data
(Including both standard system protocols
and user-defined protocols from the flash
memory in the Unit or Board)

Serial Communi-
cations Boards

CS1W-SCB21-V1

CS1W-SCB41-V1
224

Manipulating Files Section 5-2
■ Backing Up Data

1,2,3... 1. Turn ON pin 7 on the CPU Unit’s DIP switch.

2. Press and hold the Memory Card Power Supply Switch for three seconds.

The backup data for the Units and Boards will be created in a file and
stored in the Memory Card with the other backup data.

When the Power Supply Switch is pressed, the MCPWR Indicator will flash
once, light during the write operation, and then go OFF if the write is com-
pleted normally.

■ Restoring Data

1,2,3... 1. Turn ON pin 7 on the CPU Unit’s DIP switch.

2. Turn ON the PLC. The backup files will be restored to the Units and
Boards.

The backup data for the Units and Boards will be restored from the Mem-
ory Card to the Units and Boards.

When the power supply is turned ON, the MCPWR Indicator will flash
once, light during the read operation, and then go OFF if the read is com-
pleted normally.

■ Comparing Data

1,2,3... 1. Turn OFF pin 7 on the CPU Unit’s DIP switch.

2. Press and hold the Memory Card Power Supply Switch for three seconds.

The backup data on the Memory Card will be compared to the data in the
Units and Boards.

Simple
backup data

Backup

Memory Card power
supply switch

CPU Unit

Memory Card

All data

DeviceNet Unit or other
specific Unit/Board

Simple
backup
data

Restore

PLC power
turned ON.

CPU Unit

Memory Card

All data

DeviceNet Unit or other
specific Unit/Board

Simple
backup
data

Compare

Memory Card power
supply switch

CPU Unit

Memory Card

All data

DeviceNet Unit or other
specific Unit/Board
225

Using File Memory Section 5-3
When the Power Supply Switch is pressed, the MCPWR Indicator will flash
once, light during the compare operation, and then go OFF if the compare
is completed normally and the data is the same.

Note Confirm that the Units and Boards are running properly before attempting the
above operations. The write, read, and compare operations will not be per-
formed unless the Units and Boards are running properly.

5-3 Using File Memory

5-3-1 Initializing Media
Memory Cards

1,2,3... 1. Use a Programming Device, such as a Programming Console, to initialize
Memory Cards.

EM File Memory

1,2,3... 1. Use a Programming Device like a Programming Console and set EM file
memory settings in the PLC Setup to enable EM file memory, and then set
the specified bank number for EM file memory to 0 to C Hex.

2. Use a FINS command or a Programming Device other than a Program-
ming Console to initialize EM file memory.

Initializing Individual EM
File Memory

A specified EM bank can be converted from ordinary EM to file memory.

Note The maximum bank number for CJ-series CPU Units is 6.

CX-Programmer

Or

Programming
Console

Memory Card

CX-Programmer

Or

Programming
Console

Specify the starting
bank number for
EM file memory.

Initialize EM file memory.

CX-Programmer

Or

Programming
Console
226

Using File Memory Section 5-3
EM used for file memory can be restored to ordinary EM status.

The start bank number for file memory can be changed.

PLC Setup

Related Special Auxiliary Relay

Reading/Writing Symbol
Tables and Comments
using he CX-Programmer

Use the following procedure to transfer symbol tables or comments created on
the CX-Programmer to and from a Memory Card or EM file memory.

1,2,3... 1. Place a formatted Memory Card into the CPU Unit or format EM File Mem-
ory.

2. Place the CX-Programmer online.

3. Select Transfer and then To PLC or From PLC from the PLC Menu.

Bank 0

Bank n

Bank C

Bank 0

Converted to
file memory

1. Set n in PLC Setup.

2. Use a Programming Device or
FINS command to format starting at n.

3. "n" is stored in A344.

Bank n

Bank C

Bank 0 Bank 0

Bank n

Bank C

Converted to
file memory Cleared

1. Set file memory OFF in PLC Setup.

2. If a Programming Device or FINS command
is used for formatting, memory starting at n
will be cleared to 0000 Hex.

3. FFFF Hex will be stored in A344 to indicate
that there is no EM file memory.

Note: 1. Any file data present will be deleted at this time.

Bank n

Bank C

2. Only banks 0 to 6 can be specified for a CJ-series CPU Unit.

Address Name Description Initial setting

136 EM File Memory
Starting Bank

0000 Hex: None
0080 Hex: Starting at bank No. 0
008C hex: Bank No. C
The EM area starting from the specified bank num-
ber will be converted to file memory.

(Only banks 0 to 6 can be specified for a CJ-series
CPU Unit.)

0000 Hex

Name Address Description

EM File Memory Starting Bank A344 The bank number that actually starts the EM file
memory area at that time will be stored. The EM file
from the starting bank number to the last bank will be
converted to file memory. FFFF Hex will indicate that
there is no EM file memory.

Bank 0 Bank 0

Bank n

Converted to
file memory

Clear

Converted to
file memory

1. Change n to m in PLC Setup.

2. Use a Programming Device or FINS command
to convert banks starting at m to file memory.

Note: Banks n to m-1 will be cleared to 0000 Hex.

3. m will be stored in A344.

Note: 1. Any file data present will be deleted at this time.

Bank n

Bank C

Bank m

Bank C

Bank m

2. Only banks 0 to 6 can be specified for a CJ-series
 CPU Unit.
227

Using File Memory Section 5-3
4. Select either Symbols or Comments as the data to transfer.

5-3-2 Operating Procedures for Memory Cards
Using a Programming Device

1,2,3... 1. Insert a Memory Card into the CPU Unit.

2. Initialize the Memory Card with a Programming Device.

3. Use a Programming Device to name the CPU Unit data (user program, I/O
memory, parameter area), and then save the data to Memory Card. (Use
a Programming Device to read the Memory Card file to the CPU Unit.)

Automatically Transferring Files at Startup

1,2,3... 1. Insert a Memory Card into the CPU Unit. (Already initialized.)

2. Use a Programming Device to write the automatic transfer at startup files
to the Memory Card. These files include the program file (AUTOEX-
EC.OBJ), parameter area file (AUTOEXEC.STD), and I/O memory file
(AUTOEXEC.IOM or ATEXEC@@.IOM.)

Note A user program and parameter area file must be on the Memory Card.

3. Turn OFF the PLC power supply.

4. Turn ON DIP switch pin 2 (automatic transfer at startup).

Memory Card

Initialize

CX-Programmer

Or

Programming
Console

Memory Card

Initialize

CX-Programmer

Or

Programming
Console
228

Using File Memory Section 5-3
Note If pin 7 is ON and pin 8 is OFF, the backup function will be enabled
and will override the automatic transfer at startup function. (Turn
OFF pins 7 and 8 for automatic transfer at startup.)

5. Insert the Memory Card into the CPU Unit.

6. Turn ON the PLC power supply to read the file.

Using FREAD(700)/FWRIT(701)/CMND(490)

1,2,3... 1. Insert a Memory Card into the CPU Unit. (Already initialized.)

2. Use FWRIT(701) to name the file in the specified area of I/O memory and
then save the file to Memory Card.

Note A Memory Card containing TXT or CSV data files can be installed
into a personal computer’s PLC card slot with an HMC-AP001
Memory Card Adapter and the data files can be read into a spread-
sheet program using standard Windows functions (Not supported
by CS-series CS1 CPU Units that are pre-EV1).

3. Use FREAD(700) to read the file from the Memory Card to I/O memory in
the CPU Unit.

Memory Card file operations can be executed by issuing FINS commands to
the local CPU Unit with CMND(490). (Not supported by CS-series CS1 CPU
Units that are pre-EV1)

Replacing the Program during Operation

1,2,3... 1. Insert a Memory Card into the CPU Unit. (Already initialized.)

2. Write the Program Password (A5A5 Hex) in A651 and the Program File
Name in A654 to A657.

3. Turn the Replacement Start Bit (A65015) from OFF to ON.

Simple Backup Function There are 3 backup operations: backing up data to the Memory Card, restor-
ing data from the Memory Card, and comparing data with the Memory Card.

Backing Up Data from the CPU Unit to the Memory Card

1,2,3... 1. Insert a Memory Card into the CPU Unit. (Already initialized.)

2. Turn ON pin 7 and turn OFF pin 8 on the CPU Unit’s DIP switch.

3. Press and hold the Memory Card Power Supply Switch for three seconds.

4. Verify that the MCPWR Indicator flashes once and then goes OFF. (Other
changes indicate that an error occurred while backing up the data.)

Restoring Data from the Memory Card to the CPU Unit

1,2,3... 1. Insert the Memory Card containing the backup files into the CPU Unit.

DIP switch pin 2 ON

Memory Card
229

Using File Memory Section 5-3
2. Turn ON pin 7 and turn OFF pin 8 on the CPU Unit’s DIP switch.

3. The backup files will be restored when the PLC is turned ON.

4. Verify that the MCPWR Indicator flashes once and then goes OFF. (Other
changes indicate that an error occurred while restoring the data.)

Comparing Data in the Memory Card and CPU Unit

1,2,3... 1. Insert the Memory Card containing the backup files into the CPU Unit.

2. Turn OFF pins 7 and 8 on the CPU Unit’s DIP switch.

3. Press and hold the Memory Card Power Supply Switch for three seconds.

4. The data matches if the MCPWR Indicator flashes once and then goes
OFF.

Note The MCPWR Indicator will flash if an error occurs while writing or comparing
data. This flashing will stop and the MCPWR Indicator will be lit when the
Memory Card Power Supply Switch is pressed.

The following table shows the time required for backup operations with a 20-
Kstep Program and 10-ms Cycle Time in RUN mode:

The following table shows the time required for backup operations with a 30-
Kstep Program and 10-ms Cycle Time in RUN mode:

The following table shows the time required for backup operations with a 250-
Kstep Program and 12-ms Cycle Time in RUN mode:

Creating Variable Table
and Comment Files

Use the following CX-Programmer procedure to create variable table files or
comment files on Memory Cards or in EM file memory.

1,2,3... 1. Insert a formatted Memory Card into the CPU Unit or format EM file mem-
ory.

2. Place the CX-Programmer online.

3. Select Transfer and then To PLC or From PLC from the PLC Menu.

4. Select either Symbols or Comments as the data to transfer.

Note If a Memory Card is installed in the CPU Unit, data can be transferred only
with the Memory Card. (It will not be possible with EM file memory.)

5-3-3 Operating Procedures for EM File Memory
Using a Programming Device

1,2,3... 1. Use PLC Setup to specify the starting EM bank to convert to file memory.

2. Use a Programming Device to initialize EM file memory.

3. Use a Programming Device to name the CPU Unit data (user program, I/O
memory, parameter area), and then save the data to EM file memory.

Mode Backing up Restoring Comparing

PROGRAM Approx. 50 s Approx. 30 s Approx. 7 s

RUN Approx. 5 min Approx. 2 min Approx. 7 s

Mode Backing up Restoring Comparing

PROGRAM Approx. 50 s Approx. 30 s Approx. 7 s

RUN Approx. 5 min 30 s Approx. 2 min 40 s Approx. 7 s

Mode Backing up Restoring Comparing

PROGRAM Approx. 1 min 30 s Approx. 1 min 30 s Approx. 20 s

RUN Approx. 13 min Approx. 7 min 30 s Approx. 20 s
230

Using File Memory Section 5-3
4. Use a Programming Device to read the file in EM file memory to the CPU
Unit.

Using FREAD(700)/FWRIT(701)/CMND(490)

1,2,3... 1. Use PLC Setup to specify the starting EM bank to convert to file memory.

2. Use a Programming Device to initialize EM file memory.

3. Use FWRIT(701) to name the file in the specified area of I/O memory and
then save the file to EM file memory.

4. Use FREAD(700) to read the file from the EM file memory to I/O memory
in the CPU Unit.

EM file memory operations can be executed by issuing FINS commands to
the local CPU Unit with CMND(490).

Power Interruptions while
Accessing File Memory

A file being updated may not be overwritten correctly if a power interruption
occurs while the CPU is accessing file memory (the Memory Card or EM file
memory). In this case, the affected file will be deleted automatically by the
system the next time that power is turned ON. The corresponding File Dele-
tion Notification Flag (A39507 for the Memory Card, A39506 for EM file mem-
ory) will be turned ON. The flag will be turned OFF the next time that the
power is turned OFF.

When a file is deleted, a deletion log file (DEL_FILE.IOM) will be created in
the root directory of the Memory Card or EM file memory. The deletion log file
can be read with CX-Programmer or FREAD(700) to check the following infor-
mation: The date that the file was deleted, the type of file memory (media) that
existed, the subdirectory, file name, and extension. When necessary, recreate
or recopy the deleted file.

The following diagram shows the structure of the deletion log file.

Year Month ExtensionDay

Date of file deletion
(6 bytes)

Deleted file's
extension
(4 bytes)

Media type (2 bytes)
0000: Memory Card
0001: EM file memory

Deleted file's subdirectory
and file name (73 bytes)

File size: 86 bytes

Media
231

Using File Memory Section 5-3
232

SECTION 6
Advanced Functions

This section provides details on the following advanced functions: cycle time/high-speed processing functions, index
register functions, serial communications functions, startup and maintenance functions, diagnostic and debugging
functions, Programming Device functions, and the Basic I/O Unit input response time settings.

6-1 Cycle Time/High-speed Processing . 235

6-1-1 Minimum Cycle Time. 235

6-1-2 Maximum Cycle Time (Watch Cycle Time). 236

6-1-3 Cycle Time Monitoring . 236

6-1-4 High-speed Inputs. 237

6-1-5 Interrupt Functions . 237

6-1-6 I/O Refreshing Methods . 238

6-1-7 Disabling Special I/O Unit Cyclic Refreshing 239

6-1-8 Improving Refresh Response for CPU Bus Unit Data 240

6-1-9 Maximum Data Link I/O Response Time. 242

6-1-10 Background Execution . 244

6-1-11 Sharing Index and Data Registers between Tasks 250

6-2 Index Registers . 252

6-2-1 What Are Index Registers? . 252

6-2-2 Using Index Registers. 252

6-2-3 Processing Related to Index Registers . 255

6-3 Serial Communications . 261

6-3-1 Host Link Communications . 263

6-3-2 No-protocol Communications . 268

6-3-3 NT Link (1:N Mode) . 269

6-3-4 Serial PLC Links (CJ1M CPU Units Only) 270

6-4 Changing the Timer/Counter PV Refresh Mode. 276

6-4-1 Overview. 276

6-4-2 Functional Specifications . 277

6-4-3 BCD Mode/Binary Mode Selection and Confirmation 278

6-4-4 BCD Mode/Binary Mode Mnemonics and Data 279

6-4-5 Restrictions . 280

6-4-6 Instructions and Operands . 281

6-5 Using a Scheduled Interrupt as a High-precision Timer (CJ1M Only). 284

6-5-1 Setting the Scheduled Interrupt to Units of 0.1 ms. 284

6-5-2 Specifying a Reset Start with MSKS(690) . 285

6-5-3 Reading the Internal Timer PV with MSKR(692) 285

6-6 Startup Settings and Maintenance. 286

6-6-1 Hot Start/Hot Stop Functions . 286

6-6-2 Startup Mode Setting . 287

6-6-3 RUN Output . 288

6-6-4 Power OFF Detection Delay Setting . 288
233

6-6-5 Disabling Power OFF Interrupts . 288

6-6-6 Clock Functions. 289

6-6-7 Program Protection . 290

6-6-8 Remote Programming and Monitoring . 292

6-6-9 Unit Profiles . 292

6-6-10 Flash Memory . 293

6-6-11 Startup Condition Settings . 294

6-7 Diagnostic Functions . 296

6-7-1 Error Log . 296

6-7-2 Output OFF Function . 297

6-7-3 Failure Alarm Functions . 297

6-7-4 Failure Point Detection . 298

6-7-5 Simulating System Errors . 300

6-7-6 Disabling Error Log Storage of User-defined FAL Errors 300

6-8 CPU Processing Modes . 301

6-8-1 CPU Processing Modes. 301

6-8-2 Parallel Processing Mode and Minimum Cycle Times 306

6-8-3 Data Concurrency in Parallel Processing with Asynchronous Memory Access306

6-9 Peripheral Servicing Priority Mode. 306

6-9-1 Peripheral Servicing Priority Mode. 307

6-9-2 Temporarily Disabling Priority Mode Servicing. 309

6-10 Battery-free Operation . 312

6-11 Other Functions . 314

6-11-1 I/O Response Time Settings . 314

6-11-2 I/O Area Allocation. 315
234

Cycle Time/High-speed Processing Section 6-1
6-1 Cycle Time/High-speed Processing
The following functions are described in this section

• Minimum cycle time function

• Maximum cycle time function (watch cycle time)

• Cycle time monitoring

• Quick-response inputs

• Interrupt functions

• I/O refreshing methods

• Disabling Special I/O Unit cyclic refreshing

• Improving the refresh response for data links and other CPU Bus Unit
data (CS1-H, CJ1-H, or CJ1M CPU Units only)

• Reducing fluctuation in the cycle time through background execution of
data manipulations (CS1-H, CJ1-H, or CJ1M CPU Units only)

6-1-1 Minimum Cycle Time
A minimum (or fixed) cycle time can be set in CS/CJ-series PLCs. (See note.)
Variations in I/O response times can be eliminated by repeating the program
with a fixed cycle time.

Note The cycle time can also be fixed for CS1-H, CJ1-H, or CJ1M CPU
Units by using a Parallel Processing Mode.

The minimum cycle time (1 to 32,000 ms) is specified in the PLC Setup in1-
ms units.

If the actual cycle time is longer than the minimum cycle time, the minimum
cycle time function will be ineffective and the cycle time will vary from cycle to
cycle.

PLC Setup

Address Name Setting Default

208
Bits: 0 to 15

Minimum Cycle Time 0001 to 7D00: 1 to 32,000 ms
(1-ms units)

0000 (no
minimum)

Minimum cycle time
(Effective)

Actual cycle time

Minimum cycle time
(Effective)

Actual cycle time

Minimum cycle time
(Effective)

Actual cycle time

Minimum cycle time

Actual cycle time
(Effective)

Minimum cycle time

Actual cycle time
(Effective)

Minimum cycle time
(Effective)

Actual cycle time
235

Cycle Time/High-speed Processing Section 6-1
6-1-2 Maximum Cycle Time (Watch Cycle Time)
If the cycle time (see note) exceeds the maximum cycle time setting, the
Cycle Time Too Long Flag (A40108) will be turned ON and PLC operation will
be stopped.

Note Here, the cycle time would be the program execution time when us-
ing a Parallel Processing Mode for CS1-H, CJ1-H, or CJ1M CPU
Units.

PLC Setup

Auxiliary Area Flags and Words

Note If the peripheral servicing cycle exceeds 2.0 s for CS1-H, CJ1-H, or CJ1M
CPU Units in parallel processing mode, a peripheral servicing cycle time
exceeded error will occur and the CPU Unit will stop operation. If this hap-
pens, A40515 (Peripheral Servicing Cycle Time Over Flag) will turn ON.

6-1-3 Cycle Time Monitoring
The maximum cycle time and present cycle time are stored in the Auxiliary
Area every cycle. For CS1-H, CJ1-H, or CJ1M CPU Units in parallel process-
ing mode, the program execution times will be stored.

Auxiliary Area Flags and Words

A Programming Device (CX-Programmer or Programming Console) can be
used to read the average of the cycle times in the last 8 cycles.

Address Name Setting Default

209
Bit: 15

Enable Watch Cycle
Time Setting

0: Default (1s)
1: Bits 0 to 14

0001 (1 s)

209
Bits: 0 to 14

Watch Cycle Time
Setting
(Enabled when bit 15
is set to 1.)

001 to FA0: 10 to 40,000 ms
(10-ms units)

Name Address Description

Cycle Time Too Long
Flag

A40108 A40108 will be turned ON and the CPU Unit
will stop operation if the cycle time exceeds
the watch cycle time setting. The “cycle time”
would be the program execution time when
using a Parallel Processing Mode for CS1-H,
CJ1-H, or CJ1M CPU Units.

Name Address Description

Maximum Cycle Time
(program execution
time for CS1-H, CJ1-H,
or CJ1M CPU Units in
parallel processing
mode)

A262 and
A263

Stored every cycle in 32-bit binary in the follow-
ing range:
0 to 429,496,729.5 ms in 0.1 ms units
(0 to FFFF FFFF)

Present Cycle Time
(program execution
time for CS1-H, CJ1-H,
or CJ1M CPU Units in
parallel processing
mode)

A264 and
A265

Stored every cycle in 32-bit binary in the follow-
ing range:
0 to 429,496,729.5 ms in 0.1 ms units
(0 to FFFF FFFF)
236

Cycle Time/High-speed Processing Section 6-1
Reducing the Cycle Time

The following methods are effective ways to reduce the cycle time in CS/CJ-
series PLCs:

1,2,3... 1. Put tasks that aren’t being executed in standby.

2. Jump program sections that aren’t being executed with JMP(004) and
JME(005).

For CS1-H or CJ1-H CPU Units in parallel processing mode, the peripheral
servicing cycle time will be stored in A268 (Peripheral Servicing Cycle Time)
each servicing cycle.

6-1-4 High-speed Inputs
When you want to receive pulses that are shorter than the cycle time, use the
CS1W-IDP01 High-speed Input Unit or use the high-speed inputs of the
C200H-ID501/ID215 and C200H-MD501/MD115/MD215 High-density I/O
Units.

The high-speed inputs can receive pulses with a pulse width (ON time) of
1 ms or 4 ms for the C200H High-density Input Units and 0.1 ms for the
CS1W-IDP01 High-speed Input Unit.

6-1-5 Interrupt Functions
Interrupt tasks can be executed for the following conditions. Refer to �!*������!
�	�������� for more details.

I/O Interrupts (Interrupt tasks 100 to 131)

An I/O interrupt task is executed when the corresponding input (on the rising
edge of the signal or, for CS/CJ-series Interrupt Input Units, on either the ris-
ing or falling edge) is received from an Interrupt Input Unit.

Scheduled Interrupts (Interrupt tasks 2 and 3)

A scheduled interrupt task is executed at regular intervals.

Power OFF Interrupt (Interrupt task 1)

This task is executed when the power is interrupted.

External Interrupts (Interrupt tasks 0 to 255)

An external interrupt task is executed when an interrupt is received from a
Special I/O Unit, CPU Bus Unit, or Inner Board.

Note The built-in interrupt inputs and high-speed counter inputs on a CJ1M CPU
Unit can be used to activate interrupt tasks. Refer to the CJ Series Built-in I/O
Operation Manual for details.

High-speed Input Unit or
High-density Input Unit

CS1W-IDP01: 0.1 ms
CJ1W-IDP01: 0.05 ms
C200H-ID501/ID215/MD501/MD115/MD215: 4 ms
237

Cycle Time/High-speed Processing Section 6-1
6-1-6 I/O Refreshing Methods
There are three ways that the CS/CJ-series CPU Units can refresh data with
Basic I/O Units and Special I/O Units: Cyclic refreshing, immediate refreshing,
and execution of IORF(097).

1. Cyclic Refreshing
I/O refreshing is performed after all of the instructions in executable tasks
have been executed. (The PLC Setup can be set to disable cyclic refreshing
of individual Special I/O Units.)

2. Immediate Refreshing
When an address in the I/O Area is specified as an operand in the immediate-
refreshing variation of an instruction, that operand data will be refreshed when
the instruction is executed. Immediate-refreshing instructions can refresh data
allocated to Basic I/O Units.

Immediate refreshing is also possible for the built-in I/O on CJ1M CPU Units.

Note 1. When the instruction contains a bit operand, the entire word containing
that bit will be refreshed. When the instruction contains a word operand,
that word will be refreshed.

2. Input and source data will be refreshed just before execution of the instruc-
tion. Output and destination data will be refreshed just after execution of
the instruction.

3. The execution times for immediate-refreshing variations are longer than
the regular variations of instructions, so the cycle time will be longer. Refer
to 10-5 Instruction Execution Times and Number of Steps in the Operation
Manual for details.

END

END

END

I/O refreshing Actual I/O data

Task

Task

Task

Immediate refreshing
Actual I/O data

CIO 0001

CIO 0002

CIO 0003

CIO 0004
238

Cycle Time/High-speed Processing Section 6-1
3. Execution of IORF(097) and DLNK(226)

■ IORF(097): I/O REFRESH

IORF(097) can be used to refresh a range of I/O words upon execution of the
instruction. IORF(097) can refresh data allocated to Basic I/O Units and Spe-
cial I/O Units.

The following example shows IORF(097) used to refresh 8 words of I/O data.

When a high-speed response is needed for input and output from a calcula-
tion, use IORF(097) just before and just after the calculation instruction.

Note IORF(097) has a relatively long instruction execution time and that execution
time increases proportionally with the number of words being refreshed, so it
can significantly increase the cycle time. Refer to 10-5 Instruction Execution
Times and Number of Steps in the Operation Manual for more details.

■ DLNK(226): CPU Bus Unit I/O Refresh (CS1-H, CJ1-H, or CJ1M CPU Units
Only)

DLNK(226) is used to refresh data for a CPU Bus Unit of a specified unit num-
ber. The following data is refreshed.

• Words allocated to the Unit in the CIO Area

• Words allocated to the Unit in the DM Area

• Data specific to the Unit (See note.)

Note Data specific to a CPU Bus Unit would include data links for Control-
ler Link Unit or SYSMAC LINK Units, as well as remote I/O for De-
viceNet Units.

Application Example: With a long cycle time, the refresh interval for Controller
Link data links can be very long. This interval can be shortened by executing
DLNK(226) for the Controller Link Unit to increase the frequency of data link
refreshing.

6-1-7 Disabling Special I/O Unit Cyclic Refreshing
Ten words in the Special I/O Unit Area (CIO 2000 to CIO 2959) are allocated
to each Special I/O Unit based on the unit number set on the front of the Unit.
Data is refreshed between this area and the CPU Unit each cycle during I/O

St: Start word

E: End word

The data in all words from St through E are
refreshed when IORF(097) is executed.

St

E

The 7 words from CIO 0010 through CIO 0016
are refreshed when IORF(097) is executed.

0016

DLNK

N

DLNK

#1

N: Unit number of CPU Bus Unit

The instruction on the left would refresh the words
allocated to the Unit in the CIO Area and DM Area, and
data specific to the CPU Bus Unit with unit number 1.

Example:
239

Cycle Time/High-speed Processing Section 6-1
refreshing, but this cyclic refreshing can be disabled for individual Units in the
PLC Setup.

There are basically three reasons to disable cyclic refreshing:

1,2,3... 1. Cyclic refreshing for Special I/O Units can be disabled when the cycle time
is too long because so many Special I/O Units are installed.

2. If the I/O refreshing time is too short, the Unit’s internal processing may not
be able to keep pace, the Special I/O Unit Error Flag (A40206) will be
turned ON, and the Special I/O Unit will not operate properly.
In this case, the cycle time can be extended by setting a minimum cycle
time in the PLC Setup or cyclic I/O refreshing with the Special I/O Unit can
be disabled.

3. Always disable cyclic refreshing for a Special I/O Unit when it will be re-
freshed in an interrupt task by IORF(097). An interrupt task error will occur
and the Interrupt Task Error Flag (A40213) will be turned ON if cyclic re-
freshing and IORF(097) refreshing are performed simultaneously for the
same Unit.

When cyclic refreshing has been disabled, the Special I/O Unit’s data can be
refreshed during program execution with IORF(097).

PLC Setup

The Cyclic Refreshing Disable Bits for Special I/O Units 0 to 95 correspond
directly to the 96 bits in addresses 226 through 231.

6-1-8 Improving Refresh Response for CPU Bus Unit Data
This function is supported only by CS1-H, CJ1-H, or CJ1M CPU Units.

Normally, data links and other special data for CPU Bus Units are refreshed
along with the CIO and DM Area words allocated to the Units during the I/O
refresh period following program execution.

The following table lists some example of special data for CPU Bus Units.

The following functions can be used to improve the refresh response for spe-
cial CPU Bus Unit data with CS1-H, CJ1-H, or CJ1M CPU Units.

• Reducing the cycle time by using parallel processing mode or high-speed
instructions (Parallel processing mode is not supported by CJ1M CPU
Units.)

• Executing DLNK(226) to refresh specific CPU Bus Units by specifying
their unit numbers (DLNK(226) can be used more than once in the pro-
gram.)

Address Name Setting Default

226 bit 0 Cyclic Refreshing Disable Bit
for Special I/O Unit 0

0: Enabled
1: Disabled

0 (Enabled)

: : : :

231 bit 15 Cyclic Refreshing Disable Bit
for Special I/O Unit 95

0: Enabled
1: Disabled

0 (Enabled)

Units Special data

Controller Link Units and
SYSMAC LINK Units

Controller Link and SYSMAC LINK data links (includ-
ing automatically and user-set links)

CS/CJ-series DeviceNet
Units

DeviceNet remote I/O communications (including
fixed allocations and user-set allocations)
240

Cycle Time/High-speed Processing Section 6-1
Note 1. Longer cycle times (e.g., 100 ms) will increase the interval between when
data links are refreshed. DLNK(226) can be used in this case, as shown in
the following example.

Note If DLNK(226) is executed for a CPU Bus Unit that is busy refreshing
data, data will not be refreshed and the Equals Flag will turn OFF.
Normally, the Equals Flag should be programmed as shown below to
be sure that refreshing has been completed normally.

2. IORF(097) is used to refresh data for Basic I/O Units and Special I/O Units.
DLNK(226) is used to refresh CPU Bus Units (CIO and DM Area words al-
located to the Units and special data for the Units).

END

DLNK
M

DLNK
N

Data links (Controller Link or
SYSMAC Link) are refreshed here for
the CPU Bus Unit with unit number N.
(See note.)

I/O refresh

Peripheral
servicing

Cyclic task n

Data links (Controller Link or
SYSMAC Link) are refreshed here for
the CPU Bus Unit with unit number M.
(See note.)

Data links are all refreshed here for
Controller Link and SYSMAC Link.

DLNK

&0

Execution condition

= Flag Bit “a”

Refreshes data for the CPU
Bus Unit with unit number 0.

Turns ON bit “a” if data
refreshing fails, enabling the
problem to be detected.
241

Cycle Time/High-speed Processing Section 6-1
6-1-9 Maximum Data Link I/O Response Time
Normal Processing The following diagram illustrates the data flow that will produce the maximum

data link I/O response time when DLNK(226) is not used.

There are three points shown in the diagram above where processing is
delayed, increasing the data link I/O response time.

1,2,3... 1. The input arrives in the PLC (CPU Unit #1) just after I/O refreshing, caus-
ing a delay of one cycle before the input is read into the PLC. CPU Bus
Units are refreshed after program execution, causing a total delay of two
cycle times.

2. Data exchange occurs just after the PLC passes the token that makes it
the polling node, causing a delay of up to one communications cycle time
before the data is transferred in data link processing. There will also be a
delay of up to one communications cycle time after receiving the token,
causing a total delay of up to two communications cycle times.

3. The data transferred in data link processing arrives at the PLC (CPU Unit
#2) after data exchange, so the data will not be read into the PLC until the
next data exchange, causing a delay of up to one cycle. CPU Bus Units
are refreshed after program execution, causing a total delay of two cycle
times.

The equation for maximum data link I/O response time is as follows:

×

×

×

Input Unit

Input

Input ON delay

(1) Delay of two cycle times

Basic I/O Units
refreshed.

CPU Bus Units refreshed
(including data links)

One cycle time

Data transfer to
Controller Link Unit

Processing in
CPU Unit #1

(2) Delay of two communications cycle times

One com-
munica-
tions cycle

Data link transmissions
(3) Delay of two cycle times

Data received from Controller Link Unit

One cycle time

Output Unit

Output ON delay

Processing in
CPU Unit #2

Maximum data link I/O response time

Program
execution

Program
execution

Input ON delay 1.5 ms

Cycle time of PLC at CPU Unit #1 � 2 25 ms � 2

Communications cycle time � 2 10 ms � 2

Cycle time of PLC at CPU Unit #2 � 2 20 ms � 2
242

Cycle Time/High-speed Processing Section 6-1
Using DLNK(226) The following diagram illustrates the data flow that will produce the maximum
data link I/O response time when DLNK(226) is used.

There are three points shown in the diagram above where processing is
delayed, increasing the data link I/O response time.

Note In this example, it is assumed that DNLK(226) is placed after other instruc-
tions in the program in both CPU Units

1,2,3... 1. The input arrives in the PLC (CPU Unit #1) just after I/O refreshing, caus-
ing a delay of one cycle before the input is read into the PLC. CPU Bus
Units are refreshed during program execution, reducing the total delay to
approximately 1.5 cycle times.

2. Data exchange occurs just after the PLC passes the token that makes it
the polling node, causing a delay of up to one communications cycle time
before the data is transferred in data link processing. There will also be a
delay of up to one communications cycle time after receiving the token,
causing a total delay of up to two communications cycle times.

3. The data transferred in data link processing arrives at the PLC (CPU Unit
#2) after the I/O refresh, but DLNK(226) refreshes the data, so the data will
be read into the PLC without causing a delay of up to one cycle. The Basic
I/O Units are refreshed after program execution, causing a total delay of
approximately one cycle time.

Output ON delay 15 ms

Total (data link I/O response time) 126.5 ms

×

×

×

▼

DLNK
▼

DLNK
▼

DLNK
▼

DLNK
▼

DLNK
▼

DLNK
▼

Input Unit

Input

Input ON delay

(1) Delay of 1.5 cycle times

Basic I/O Units refreshed.

CPU Bus Units refreshed
(including data links)

One cycle time

Data transfer to
Controller Link Unit

Processing in
CPU Unit #1

(2) Delay of two communications cycle times

One com-
munica-
tions cycle

Data link transmissions

(3) Delay of approx one cycle time

Data received from Controller Link Unit

Output Unit

Output ON delay

Processing in
CPU Unit #2

Maximum data link I/O response time

DLNK(226) execution

One cycle time max

Program
execution

Program
execution
243

Cycle Time/High-speed Processing Section 6-1
The equation for maximum data link I/O response time is as follows:

6-1-10 Background Execution
Background execution can be used to reduce fluctuations in the cycle time.
Background execution is supported only by CS1-H, CJ1-H, or CJ1M CPU
Units.

Table data processing (such as data searches) and text string processing
(such as text string searches), require time to execute, and can create large
fluctuations in the cycle time due to the extended amount of time required to
execute them.

With the CS1-H, CJ1-H, or CJ1M CPU Units, however, background execution
(time slicing) can be used to execute the following instructions over several
cycles to help control fluctuations in the cycle time. The PLC Setup enables
setting background execution for each type of instruction.

• Table data processing instructions

• Text string processing instructions

• Data shift instructions (ASYNCHRONOUS SHIFT REGISTER only)

Setting background execution for the above instructions can help control tem-
porary increases in the cycle time.

Applications
Background execution can be used for large quantities of data processing,
such as data compilation or processing, that is required only at special times
(e.g., once a day) when reducing the effect on the cycle time is more impor-
tant than the speed of the data processing.

Procedure

1,2,3... 1. Set the PLC Setup to enable background execution for the required in-
structions.

2. Set the communications port number (logical port number) to be used for
background execution in the PLC Setup. This port number will be used for
all instructions processed in the background.

Note One port is used for all background execution. Background execu-
tion for an instruction can thus not be started if background execution
is already being performed for another instruction. Use the Commu-
nications Port Enabled Flag to control instructions specified for back-

Input ON delay 1.5 ms ---

Cycle time of PLC at CPU Unit #1 � 1.5 25 ms � 1.5 Faster by 12.5 ms
(25 ms x 0.5)

Communications cycle time � 2 10 ms � 2 ---

Cycle time of PLC at CPU Unit #2 � 1 20 ms � 1 Faster by 20 ms
(20 ms x 1)

Output ON delay 15 ms ---

Total (data link I/O response time) 94 ms Faster by 32.5 ms
(26% faster)

MAX

MAX

CS1 CPU Unit

Long execution
time

Longer cycle time
when MAX is
executed.

CS1-H or CJ1-H
CPU Unit

Execution
only
started. Executed over

several cycles
using time slicing.

Background
execution

�

244

Cycle Time/High-speed Processing Section 6-1
ground execution so that no more than one instruction is executed at
the same time.

3. If an instruction for which background execution has been specified is ex-
ecuted, execution will only be started in the cycle in which the execution
condition was met and execution will not be completed in the same cycle.

4. When background execution is started, the Communications Port Enabled
Flag for that port will be turned OFF.

5. Background execution will be continued over several cycles.

6. When processing has been completed, the Communications Port Enabled
Flag for that port will be turned ON. This will enable another instruction to
be executed in the background.

Applicable Instructions

■ Table Data Processing Instructions

■ Text String Processing Instructions

■ Data Shift Instructions

Differences between Instructions Executed Normally and in the Background
The differences between normal instruction execution and execution in the
background are listed below.

■ Outputting to Index Registers (IR)

If MAX(182) or MIN(183) is executed to output the I/O memory map address
of the word containing the minimum or maximum value to an index register,
the address will not be output to the index register and will be output to A595
and A596 instead. To store the address in an index register, use a Data Move

Instruction Mnemonic Function
code

DATA SEARCH SRCH 181

SWAP BYTES SWAP 637

FIND MAXIMUM MAX 182

FIND MINIMUM MIN 183

SUM SUM 184

FRAME CHECKSUM FCS 180

Instruction Mnemonic Function
code

MOVE STRING MOV$ 664

CONCATENATE STRING +$ 656

GET STRING LEFT LEFT$ 652

GET STRING RIGHT RIGHT$ 653

GET STRING MIDDLE MID$ 654

FIND IN STRING FIND$ 660

STRING LENGTH LEN$ 650

REPLACE IN STRING RPLC$ 661

DELETE STRING DEL$ 658

EXCHANGE STRING XCHG$ 665

CLEAR STRING CLR$ 666

INSERT INTO STRING INS$ 657

Instruction Mnemonic Function
code

ASYNCHRONOUS SHIFT REGISTER ASFT 017
245

Cycle Time/High-speed Processing Section 6-1
instruction (e.g., MOVL(498)) to copy the address in A595 and A596 to an
index register.

■ Conditions Flags

Conditions Flags will not be updated following execution of instructions pro-
cessed in the background. To access the Conditions Flag status, execute an
instruction that affects the Conditions Flags in the same way, as shown in the
following example, and then access the Conditions Flags.

Example:
MOV(021) affects the Equals and Negative Flags in the same way as
MAX(182), i.e., they both turn ON the Equals Flag for 0 and turn ON the Neg-
ative Flag if the MSB is ON. MOV(021) can thus be used to copy the results of
MAX(182) to the same address to manipulate the Conditions Flags so that the
status can be accessed.

■ Outputting to Index Register IR00

If SRCH(181) is executed to output the I/O memory map address of the word
containing the matching value (the first word if there is more than one) to an
index register, the address will not be output to the index register and will be
output to A595 and A596 instead.

■ Outputting to Data Registers (DR) for SRCH(181)

If SRCH(181) is executed to output the matching data to a data register, the
data will not be output to the data register and will be output to A597 instead.

■ Matching Text Strings

If SRCH(181) finds matching data, it will not turn ON the Equals Flag, but will
turn on A59801 instead.

■ Instruction Errors

If an instruction execution error or illegal access error occurs for an instruction
being processed in the background, the ER or AER Flags will not be turned
ON and A39510 will be turned ON instead. A39510 will remain ON until the
next time an instruction is processed in the background.

MAX

D01000

D02000

D00000

 W00000

MOV

D00000

D00000

RSET

000000

SET

000001

000001 A20200

Execution condition

Finds the maximum value in the
table data starting at D020000
and places it in D000000.

Moves the contents of D000000
to D000000 to manipulate the
Conditions Flags.

Turns ON W00000 if the Equals
Flag is ON, i.e., if D000000
contains 0000 Hex.
246

Cycle Time/High-speed Processing Section 6-1
■ Outputting to Data Registers (DR) for MAX(182) or MIN(183)

If MAX(182) or MIN(183) is executed with a data register specified as the out-
put word for the minimum or maximum value, an instruction execution error
will occur and the ER Flag will turn ON.

PLC Setup

Auxiliary Area Flags and Words

Word Bits Name Setting Default and
update
timing

198 15 Table Data Instruc-
tion Background Exe-
cution

0: Not processed in back-
ground

1: Processed in background

0: Not pro-
cessed in
background
Start of oper-
ation

14 Text String Instruc-
tion Background Exe-
cution

0: Not processed in back-
ground
1: Processed in background

13 Data Shift Instruction
Background Execu-
tion

0: Not processed in back-
ground
1: Processed in background

00 to
03

Communications Port
Number for Back-
ground Execution

0 to 7 Hex: Communications
ports 0 to 7 (internal logical
ports)

0 Hex: Port 0
Start of oper-
ation

Name Address Description

Communica-
tions Port
Enabled Flags

A20200 to
A20207

Turns ON when a network instruction (SEND, RECV,
CMND, or PMCR) can be executed with the corre-
sponding port number or background execution can be
executed with the corresponding port number (CS1-H,
CJ1-H, or CJ1M CPU Units only). Bits 00 to 07 corre-
spond to communications ports 0 to 7
When the simple backup operation is used to performed
a write or compare operation for a Memory Card on a
CS1-H, CJ1-H, or CJ1M CPU Unit, a communications
port will be automatically allocated, and the correspond-
ing flag will be turned ON during the operation and
turned OFF when the operation has been completed.

Communica-
tions Port
Error Flags

A21900 to
A21907

Turns ON when an error occurred during execution of a
network instruction (SEND, RECV, CMND, or PMCR).
Bits 00 to 07 correspond to communications ports 0 to
7.

When the simple backup operation is used to performed
a write or compare operation for a Memory Card on a
CS1-H, CJ1-H, or CJ1M CPU Unit, a communications
port will be automatically allocated. The corresponding
flag will be turned ON if an error occurs and will be
turned OFF if the simple backup operation ends nor-
mally.

Communica-
tions Port
Completion
Codes

A203 to
A210

These words contain the completion codes for the cor-
responding port numbers when network instructions
(SEND, RECV, CMND, or PMCR) have been executed.
The contents will be cleared when background execu-
tion has been completed (for CS1-H, CJ1-H, or CJ1M
CPU Unit only). Words A203 to A210 correspond to
communications ports 0 to 7.
When the simple backup operation is used to performed
a write or compare operation for a Memory Card on a
CS1-H, CJ1-H, or CJ1M CPU Unit, a communications
port will be automatically allocated, and a completion
code will be stored in the corresponding word.
247

Cycle Time/High-speed Processing Section 6-1
Note The communications ports (internal logical ports) in the CPU Unit are used
both for background execution and the following instructions

• SEND(090), RECV(098), and CMND(490) (Network Communications
Instructions)

• PMCR(260) (PROTOCOL MACRO)

Background instructions and the above instructions cannot be executed
simultaneously on the same port. Use the Communications Port Enabled
Flags to be sure that only one instruction is executed on each port at any one
time.

Note If an instruction is specified for execution in the background for a port
for which the Communications Port Enabled Flag is OFF, the ER Flag
will turn ON and the background instruction will not be executed.

Communications Port Enabled Flags
The Communications Port Enabled Flags are ON when the port is not being
used and OFF when processing is being performed on the port.

Background
Execution ER/
AER Flag

A39510 Turns ON when an instruction execution error or illegal
access error occurs in an instruction being executed in
the background. Turns OFF when power is turned ON
or operation is started.

Background
Execution
IR00 Output

A595 and
A596

These words receives the output when the output of an
instruction executed in the background is specified for
an index register. No output will be made to IR00.

Range: 0000 0000 to FFFF FFFF Hex
Lower 4 digits: A595, Upper 4 digits: A596

Background
Execution
DR00 Output

A597 This word receives the output when the output of an
instruction executed in the background is specified for a
data register. No output will be made to DR00.
Range: 0000 to FFFF Hex

Background
Execution
Equals Flag
Output

A59801 This flag is turned ON when matching data is found for
a SRCH(181) executed in the background.

Name Address Description

Communications Port
Enabled Flag

Background instruction
processing for user
program

Instruction
executed

Cycle time Cycle time Cycle time

Background execution

I/O refresh
248

Cycle Time/High-speed Processing Section 6-1
Programming Example 1

■ Traditional Programming without Background Execution

As shown below, processing is completed when the instruction is executed.

■ Programming with Background Execution

With background execution, the program is changed so that MAX(182) is exe-
cuted only when the specified Communications Port Enabled Flag is ON (i.e.,
only when the port is not already being used for background execution or net-
work communications). Also, input conditions are controlled with SET and
RESET instructions to ensure that processing is performed in the correct
order. (Communications port 0 is used for background execution in the follow-
ing example.)

MAX

D00000

D00100

D00200

a

SUM

D00002

D00100

D00201

Execution condition

MAX(182) is executed completely as soon
as the execution condition “a” turns ON.

SUM(184) can be executed immediately
after MAX(182).

RSET
a

SET
b

MAX
D00000
D00100
D00200

a A20200

RSET
b

SUM
D00002
D00100
D00201

b A20200

SET
c

c A20200

Execution
condition

Execution condition “b” is turned ON to
enable the next background instructions
(here, SUM(184)).

SUM(184) execution is started if
execution condition “b” is ON and the
Communications Port Enabled Flag is ON
(i.e., when MAX(182) execution has been
completed).

MAX(182) execution is started if execution
condition “a” is ON and the Communications
Port Enabled Flag is ON.

“a” is turned OFF so that MAX(182) will not
be executed the next cycle.

“b” is turned OFF so that SUM(184) will not
be executed the next cycle.

Execution of SUM(184) has been completed
when “c” is ON and the Communications
Port Enabled Flag is ON.

“c” is turned ON to enable confirming the
completion of SUM(184).

Confirmation of
completion of
background
execution

Communications
Port Enabled Flag

Execution
condition

Communications
Port Enabled Flag
249

Cycle Time/High-speed Processing Section 6-1
Programming Example 2
This examples show background execution when index register output is
specified, as is possible for MAX(182), MIN(183), and SRCH(181).

■ Traditional Programming without Background Execution

As shown below, the actual memory map address of the word containing the
maximum value is output to an index register.

■ Programming with Background Execution

With background execution, the actual memory map address of the word con-
taining the maximum value is output to A595 and A596. MOVL(498) is then
used the actual memory map address to the index register.

6-1-11 Sharing Index and Data Registers between Tasks
Sharing Index and Data Registers (IR/DR) between tasks is supported only by
CS1-H, CJ1-H, or CJ1M CPU Units. The normal setting is for separate regis-
ters for each task. The current setting can be confirmed in A09914.

Note 1. Shared Index and Data Registers can be used to eliminate the need to
store and load register contents between tasks when the same contents is
needed in two or more tasks. Refer to the section on index registers in the

MAX

D00000

D00100

D00200

a

MOV

,IR0

D00300

Execution condition
MAX(182) is executed completely as
soon as the execution condition “a”
turns ON, and the actual memory map
address of the word containing the
maximum value is output to IR0

The contents of the I/O memory word
indicated by the memory map
address in IR0 is copied to D00300.

RSET

a

SET

b

MAX

D00000

D00100

D00200

a A20200

MOV

,IR0

D00300

MOVL

A595

IR0

b A20200

RSET

b

Execution condition “b” is turned ON to
execute MOVL(498).

When execution condition “b”
is ON and the
Communications Port
Enabled Flag is ON,
MOVL(498) copies the actual
memory map address in
A595 and A596 to IR0.

MAX(182) execution is started if execution
condition “a” is ON and the Communications
Port Enabled Flag is ON. The actual memory
map address of the word containing the
maximum value is output to A595 and A596.

“a” is turned OFF so that MAX(182) will not
be executed the next cycle.

The contents of the I/O memory word
indicated by the memory map address in IR0
is copied to D00300.

Extra
processing
required to
move
address.

Execution
condition

Communications
Port Enabled Flag

Execution
condition

Communications
Port Enabled Flag
250

Cycle Time/High-speed Processing Section 6-1
CS Series Operation Manual (W339) or the CJ Series Operation Manual
(W393) for information on storing and loading index register contents.

2. The switching time between tasks will be somewhat faster when index and
data registers are shared. It is recommended to set shared registers if the
registers are not being used or if there is no particular need for separate
registers in each task.

Setting Method
Use the CX-Programmer to set shared index and data registers. This setting
cannot be made from a Programming Console.

1,2,3... 1. Select a PLC (PLC) in the CX-Programmer project tree and click the right
mouse button.

2. Select Properties. The following dialog box will be displayed.

3. Leave the checkmark for using IR/DR independently per task if separate
index and data registers are required for each task. Remove the check-
mark to use shared index and data registers for all tasks.

Auxiliary Area Flags and Words
Name Address Description

IR/DR Opera-
tion between
Tasks

A09914 Indicates whether or not index and data registers are
shared between tasks.
0: Separate registers for each task (default)
1: Shared registers for all tasks
251

Index Registers Section 6-2
6-2 Index Registers

6-2-1 What Are Index Registers?
Index Registers function as pointers to specify PLC memory addresses,
which are absolute memory addresses in I/O memory. After storing a PLC
memory address in an Index Register with MOVR(560) or MOVRW(561),
input the Index Register as an operand in other instructions to indirectly
address the stored PLC memory address.

The advantage of Index Registers is that they can specify any bit or word in I/
O memory, including timer and counter PVs.

6-2-2 Using Index Registers
Index Registers can be a powerful tool when combined with loops such as
FOR-NEXT loops. The contents of Index Registers can be incremented, dec-
remented, and offset very easily, so a few instructions in a loop can process
tables of consecutive data very efficiently.

Basic Operation

Basically, Index Registers are used with the following steps:

1,2,3... 1. Use MOVR(560) to store the PLC memory address of the desired bit or
word in an Index Register.

2. Specify the Index Register as the operand in almost any instruction to in-
directly address the desired bit or word.

3. Offset or increment the original PLC memory address (see below) to redi-
rect the pointer to another address.

4. Continue steps 2 and 3 to execute the instruction on any number of ad-
dresses.

Offsetting, Incrementing, and Decrementing Addresses

The following table shows the variations available for indirect addressing.

Pointer
All areas of
I/O Memory

MOVR(560)

Index Register

Increment IR0 and repeat
instruction execution

Table data

Indirect
addressing

Variation Syntax

Indirect addressing ,IR@
Indirect addressing with constant offset Constant ,IR@

(Include a + or – in the constant.)
252

Index Registers Section 6-2
Instructions That Directly Address Index Registers

Index registers can be directly addressed by the following instructions.

DOUBLE SIGNED BINARY ADD WITHOUT CARRY: +L(401), DOUBLE
SIGNED BINARY SUBTRACT WITHOUT CARRY: –L(411), DOUBLE
INCREMENT BINARY: ++L(591), and DOUBLE DECREMENT BINARY: – –
L(593)

Example 1

The following example shows how an Index Register in a program loop can
replace a long series of instructions. In this case, instruction A is repeated n+1
times to perform some operation such as reading and comparing a table of
values.

Example 2

The following example uses Index Registers in a FOR–NEXT loop to define
and start 100 timers (T0000 to T099) with SVs contained in D00100 through
D00109. Each timer’s timer number and Completion Flag are specified in
Index Registers and the loop is repeated as the Index Registers are incre-
mented by one with each repetition.

Indirect addressing with DR offset DR@,IR@
Indirect addressing with auto-increment Increment by 1: ,IR@+

Increment by 2: ,IR@++

Indirect addressing with auto-decrement Decrement by 1: ,–IR@
Decrement by 2: ,– –IR@

Variation Syntax

Instruction A m

Instruction A m+1

Instruction A m+n

MOVR(560) m IR0

Add 1 to IR0 (n times)

Instruction A ,IR0+

Stores the PLC memory
address of m in IR0.

Repeats the process
in a loop such as
FOR-NEXT.

 TIM starts the timer with the timer number (timer PV) indirectly
addressed by IR0+.

 If the timer's Completion Flag (indirectly addressed by IR1+) is
ON, the work bit indirectly addressed by IR2+ is turned ON.

 The IR0+, IR1+, and IR2+ variations increment the address in
the Index Register after referencing the address.

 The ++ instruction increments D00000.

Repeated

MOVRW(561) stores the PLC memory address of T0000's PV in IR0.
MOVR(560) stores the PLC memory address of T0000's Completion Flag in
IR1.
MOVR(560) stores the PLC memory address of W00000 is stored in IR2.
253

Index Registers Section 6-2
The 11-instruction subroutine on the left is equivalent to the 200-instruction
subroutine on the right.

 JMP

 &1

 MO V

 &100

 D00000

 MO VR

 W00000

 IR2

 MO VR

 T0000

 IR1

 MOVRW

 T0000

 IR0

,IR2

,IR1+

 FOR

 &100

 TIM

 ,IR O+

 @D00000

 ++

 D00000

 NEXT

 JME

 &1

T0000

T0001

T0099

00
W000

01
W000

03
W006

ON

,IR2+

01
W000

00
W000

03
W006

Puts the PLC memory
address of T0000's
PV in IR0.

Puts the PLC memory
address of T0000's
Completion Flag in IR1.

Puts the PLC memory
address of W00000
in IR2.

Writes &100 in D00000.

Jumps the FOR-NEXT
loop if the pointers above
haven't been set.

Repeats the FOR-NEXT
loop 100 times.

If the Work bit addressed in
IR2 is OFF, TIM starts the tim-
er with the timer PV ad
dressed in IR0+ and the SV
addressed in D00000.

If the Completion Flag addressed in
IR1 is ON, OUT turns ON the Work
bit addressed in IR2.

Increments the content of D00000.
(The next address containing an SV.)

The FOR-NEXT loop starts timers T0000 through T0099 by repeating
the loop 100 times while incrementing the contents of IR0 (timer number/
PV address), IR1 (Completion Flag address), IR2 (Work bit address),
and D00000 (SV address).

 TIM

 0000

 D00100

 TIM

 0001

 D00101

 TIM

 0099

 D00109
254

Index Registers Section 6-2
Direct Addressing of Index Registers

Index Registers can be directly addressed only in the instructions shown in
the following table.

Note Instructions for double-length operands (i.e., those with “L” at the end) are
used for index registers IR0 to IR15 because each register contains two
words.

6-2-3 Processing Related to Index Registers
The CS/CJ-series CPU Unit’s Table Data Processing instructions complement
the functions of the Index Registers. These instructions can be broadly
divided into the stack-processing and table-processing instructions

Instruction group Instruction name Mnemonic Primary function

Data Movement Instruc-
tions

MOVE TO REGISTER MOVR(560) Stores the PLC memory address
of a bit or word in an Index Regis-
ter.

MOVE TIMER/COUNTER PV TO REG-
ISTER

MOVRW(561)

Table Data Processing
Instructions

SET RECORD LOCATION SETR(635)

GET RECORD NUMBER GETR(636) Outputs the PLC memory address
stored in an Index Register.

Data Movement Instruc-
tions

DOUBLE MOVE MOVL(498) Transfers between Index Regis-
ters. Used for exchanges and
comparisons.

DOUBLE DATA EXCHANGE XCGL(562)

Comparison Instructions DOUBLE EQUAL =L(301)

DOUBLE NOT EQUAL
��L(306)

DOUBLE LESS THAN
�L(311)

DOUBLE LESS THAN OR EQUAL
�=L(316)

DOUBLE GREATER THAN �L(321)

DOUBLE GREATER THAN OR EQUAL �=L(326)

DOUBLE COMPARE CMPL(060)

Increment/Decrement
Instructions

DOUBLE INCREMENT BINARY ++L(591) Changes the PLC memory
address in the Index Register by
incrementing, decrementing, or
offsetting its content.

DOUBLE DECREMENT BINARY – –L(593)

Symbol Math Instructions DOUBLE SIGNED BINARY ADD WITH-
OUT CARRY

+L(401)

DOUBLE SIGNED BINARY SUBTRACT
WITHOUT CARRY

–L(411)

Special Instructions CONVERT ADDRESS FROM CV FRMCV(284) Convert actual PLC memory
addresses between CV-series and
CS/CJ-series addresses.
(CS1-H, CJ1-H, or CJ1M CPU
Units only)

CONVERT ADDRESS TO CV TOCV(285)

Processing Purpose Instructions

Stack processing Operate FIFO (first-in first-out) or
LIFO (last-in first-out) data tables,
and read, write, insert, delete, or
count data entries in data tables.

SSET(630), PUSH(632), FIFO(633),
LIFO(634) and, for CS1-H, CJ1-H, or
CJ1M CPU Units only, SREAD(639),
SWRITE(640), SINS(641), SDEL(642),
SNUM(638)
255

Index Registers Section 6-2
Stack Processing
Stack instructions act on specially defined data tables called stacks. Data can
be drawn from a stack on a first-in first-out (FIFO) or last-in first-out (LIFO)
basis.

A particular region of I/O memory must be defined as a stack. The first words
of the stack indicate the length of the stack and contain the stack pointer. The
stack pointer is incremented each time that data is written to the stack to indi-
cate the next address where data should be stored.

Note Actually, the first two words of the stack contain the PLC memory address of
the last word in the stack and the next word contains the stack pointer.

FIFO (First-in First-out) Processing

The following diagram shows the operation of a first-in first-out (FIFO) stack.

Table
process-
ing

Tables with one-
word records

(Range instruc-
tions)

Basic pro-
cessing

Find values such as the checksum, a
particular value, the maximum value,
or minimum value in the range.

FCS(180), SRCH(181), MAX(182),
MIN(183), and SUM(184)

Special
processing

Perform various other table process-
ing such as comparisons or sorting.

Combine Index Registers with instruc-
tions such as SRCH(181), MAX(182),
MIN(183), and comparison instruc-
tions.

Tables with multiple-word
records
(Record-table instructions)

Process data in records that are sev-
eral words long.

Combine Index Registers with instruc-
tions such as DIM(631), SETR(635),
GETR(636), and comparison instruc-
tions.

Processing Purpose Instructions

B

A
B

Pointer address Pointer address Pointer address

Stack
region

A
Pointer address

A C

A

C

B

(The above diagram shows
the status of the pointer
data before data is added.)

AA

B

Pointer address

Reads the oldest word of data stored
in the stack. Each time that a word is
read, the pointer is decremented by one
to indicate the next address for storage.

X

C

256

Index Registers Section 6-2
LIFO (Last-in First-out) Processing

The following diagram shows the operation of a last-in first-out (LIFO) stack.

Manipulating Specific Table Data

Individual entries in a table can be read, writing, inserted, or deleted. The fol-
lowing diagram shows an example for reading.

Counting Table Data

The following diagram shows how data can be counted in a data table.

Stack Instructions

The following table lists the stack instructions and their functions. Typical
applications for stacks would be processing shelf information for automatic
warehousing systems, processing test results, and managing information on
workpieces on a conveyor.

Instruction Function

SSET(630) Defines a stack region.

PUSH(632) Stores data in the next available word in the stack.

FIFO(633) Reads data from the stack on a first-in first-out basis.

LIFO(634) Reads data from the stack on a last-in first-out basis.

SREAD(639) Read a specific entry from the table (CS1-H, CJ1-H, or CJ1M CPU
Units only).

SWRITE(640) Writes a specific entry to the table (CS1-H, CJ1-H, or CJ1M CPU
Units only).

SINS(641) Inserts a specific entry in the table (CS1-H, CJ1-H, or CJ1M CPU
Units only).

SDEL(642) Deletes a specific entry from the table (CS1-H, CJ1-H, or CJ1M CPU
Units only).

SNUM(638) Counts the number of entries in the table (CS1-H, CJ1-H, or CJ1M
CPU Units only).

A
B

Pointer address

X

Reads most recent word of data stored
in the stack. Each time that a word is
read, the pointer is decremented by one
to indicate the ne
Data at the position that was read
remains unchanged.

xt address for storage.
X

V
W1

A

V

B

W

X

V

−n

Pointer address

Read
Data is read from a specific offset from
the point address in the table.
Manipulating specific table data can be
used, for example, in tracing items on a
conveyor.

An offset from the point
address is specified.

A

N

B

W

X

V

Pointer address

Counts all entries
from one before the
pointer address.

The number of entries in the data table
are counted from just before the pointer
address to the beginning of the table.
This can be used, for example, to count
the number of items on a conveyor.
257

Index Registers Section 6-2
Table Processing (Range Instructions)

The range instructions act on a range of words, which can be considered a
table of one-word records. These instructions perform basic operations such
as finding the maximum value or minimum value in the range, search for a
particular value in the range, or calculating the sum or FCS.

The PLC memory address of the result word (word containing the max. value,
min. value, search data, etc.) is automatically stored in IR0. The Index Regis-
ter (IR0) can be used as an operand in later instructions such as MOV(021) to
read the contents of the word or perform other processing.

The following table lists the range instructions and their functions.

The Index Registers can be combined with other instructions (such as com-
parison instructions) in FOR–NEXT loops to perform more complicated opera-
tions on ranges of words.

Table Processing (Record-table Instructions)

The record-table instructions act on specially defined data tables made up of
equal-length records. The records can be accessed by record number for
easy processing.

Note Record numbers and word addresses are related through the Index Regis-
ters. Specify a record number in SETR(635) to store the PLC memory
address of the beginning of that record in an Index Register. When data is
required from the record, add the required offset to that Index Register to
access any word in the record.

Use the record-table instructions with Index Registers to perform the following
kinds of operations: reading/writing record data, searching records, sorting

Range speci-
fied in the
instruction

Max. value
Min. value

SUM calculation
FCS calculation

Search

Data

Instruction Function Description

SRCH(181) Finds search data. Finds the search data in the specified range
and outputs the PLC memory address of the
word containing that value to IR0.

MAX(182) Finds max. value. Finds the maximum value in the specified
range and outputs the PLC memory address
of the word containing that value to IR0.

MIN(183) Finds min. value. Finds the minimum value in the specified
range and outputs the PLC memory address
of the word containing that value to IR0.

SUM(184) Calculates sum. Calculates the sum of the data in the specified
range.

FCS(180) Calculates checksum. Calculates the frame checksum of the data in
the specified range.

Instruction Function Description

DIM(631) Defines a record table. Declares the length of each record and the
number of records.

SETR(635) Sets record location. Writes the location of the specified record (the
PLC memory address of the beginning of the
record) in the specified Index Register.

GETR(636) Gets record location. Returns the record number of the record that
contains the PLC memory address in the
specified Index Register.
258

Index Registers Section 6-2
record data, comparing record data, and performing calculations with record
data.

A typical application of record tables is storing manufacturing data for different
models of a product (such as temperature and pressure settings) in record
form and switching from model to model just by changing the record number.

Basically, record tables are used with the following steps:

1,2,3... 1. Define the structure of the record table with DIM(631) and set the PLC
memory address of a record in an Index Register with SETR(635).

2. Offset or increment the PLC memory address in the Index Register to read
or compare words in the record.

3. Offset or increment the PLC memory address in the Index Register to
switch to another record.

4. Repeat steps 2 and 3 as required.

Example

The following example uses Index Registers and the record-table instructions
to compare three values to words 1, 3, and 5 in each record. If a match is
found, the record number is stored in D00000.

Model A
↓

No. 2
↓

Model A
Record 2

Temperature setting
Pressure setting

Record table

Record 1

Record 2

Record N

DIM(631) defines a record table with 1,000 records of 5 words
each.
SETR(635) stores the PC memory address of the first record in
IR0.

• The first, third, and fifth words in the record are compared to three
different values.

• If all three words match their respective values, the record number
is stored in D00000 by GETR(636) and the loop is broken.

• If all three words do not match their respective values, 5 is added
to IR0 and the loop continues.
259

Index Registers Section 6-2
 BREAK

0000
01

ON

 JMP

 &1000

 DIM

 1

 &5

 &1000

 E0_00000

 FOR

 &1000

 JME

 &1000

 NEXT

 +L

 IR0

 &5

 IR0

 SETR

 1

 &0

 IR0

 =

 ,IR0

 #1234

 =

 +2,IR0

 #ABCD

 =

 +4,IR0

 #9999

 GETR

 &1

 IR0

 D00000

Defines record table 1 with 1,000 records of
5 words each.

Jumps past the FOR-NEXT loop if the pro-
cessing conditions haven't been set.

Controls the FOR-NEXT loop for a maximum
of 1,000 repetitions (1,000 records).

Compares the contents of word 1 to #1234,
word 3 to #ABCD, and word 5 to #9999.

If words 1, 3, and 5 contain the comparison
data, the record number is stored in D00000
and BREAK interrupts the loop.

Returns execution to FOR to continue the loop.

Jump destination if the processing conditions
haven't been set.

Increments IR0 by five with each repetition and compares the first, third,
and fifth words in each record to the comparison data. Writes the record
number to D00000 and breaks the loop if matching data is found.

Stores the PLC memory address of table
number 1's first record (record 0) in IR0.

Adds 5 to the PLC memory address in IR0 to
move to the beginning of the next record.
260

Serial Communications Section 6-3
6-3 Serial Communications
The CS/CJ-series CPU Units support the following serial communications
functions. Host link communications and no-protocol communications are
described in detail later in this section.

Protocol Connections Description Ports

Peripheral RS-232C

 Host link 1) Various control commands such
as reading and writing I/O mem-
ory, changing the operating
mode, and force-setting/reset-
ting bits can be executed by
issuing host link commands or
FINS commands from the host
computer to the CPU Unit.

2) It is also possible to issue FINS
commands from the CPU Unit
to the host computer to send
data or information.

Use host link communications to
monitor data such as operating
status, error information, and qual-
ity data in the PLC or send data
such as production planning infor-
mation to the PLC.

 OK OK

No-protocol Communicate with standard
devices connected to the RS-232C
port without a command–response
format. Instead the TXD(236) and
RXD(235) instructions are exe-
cuted from the program to transmit
data from the transmission port or
read data in the reception port.
The frame headers and end codes
can be specified.

Not allowed OK

NT link
1:N or 1:1

Data can be exchanged with PTs
without using a communications
program in the CPU Unit.

OK OK

Host computer

or

OMRON PT
(Programmable
Terminal)

Standard external device

OMRON PTs
(Programmable Terminals)
261

Serial Communications Section 6-3
 Here, we will describe Host Link and No-protocol communications.

Peripheral
bus

Provides high-speed communica-
tions with Programming Devices
other than Programming Con-
soles.
(Remote programming through
modems is not supported.)

OK OK

Serial PLC
Links (CJ1M
only)

Up to ten words per Unit can be
shared by up to nine CPU Units,
including one Polling Unit and
eight Polled Units.

An RS-422A Converter can be
connected to the RS-232C port on
each CPU Unit to communicate
via RS-422A/485, or two CPU
Units can communicate via an RS-
232C connection.

The Serial PLC Links can also
include PTs as Polled Units via NT
Links (1:N) combined with CJ1M
CPU Units.

Not allowed OK

Protocol Connections Description Ports

Peripheral RS-232C

Programming Devices
(Not Programming Consoles)

RS-422A/485

RS-232C

CJ1M CPU Unit
Polling Unit

CJ1W-CIF11
connected to
RS-232C port

CJ1M CPU Unit
Polled Unit

CJ1M CPU Unit
Polled Unit

For NS-series PT:
NS-AL002

8 Units max.

CJ1M CPU Unit
Polling Unit

CJ1M CPU Unit
Polled Unit
262

Serial Communications Section 6-3
6-3-1 Host Link Communications
The following table shows the host link communication functions available in
CS/CJ PLCs. Select the method that best suits your application.

Note 1. The FINS command must have a host link header and terminator attached
before it is transmitted from the host computer.

Command flow Command type Communications method Configuration

Create frame in the host com-
puter and issue command to the
PLC. Receive the response from
the PLC.
Application:
Use this method when communi-
cating primarily from the host
computer to the PLC.

Create frame in the host com-
puter and issue command to the
PLC. Receive the response from
the PLC.
Application:
Use these methods when com-
municating primarily from the
host computer to PLCs in the
network.

Issue frame with the CPU Unit’s
SEND/RECV/CMND instruc-
tions. Receive response from the
host computer.

Application:
Use this method when communi-
cating primarily from the PLC to
the host computer to transmit
status information such as error
information.

Host computer

PLC

Host link command

Host link command

Directly connect the host computer in a 1:1
or 1:N system.

OR

Command

FINS command1

(with host link header
and terminator)

Header Terminator

FINS

Directly connect the host computer in a 1:1
or 1:N system.

OR

Command

Command

Communicate with other PLCs in the
network from the host computer. (Convert
from host link to network protocol.)

PLC

Host computer

FINS command2

(with host link header
and terminator)

Header Terminator

FINS

Directly connect the host computer in a 1:1
system.

SEND/RECV/
CMND

Command

SEND/RECV/
CMND

Command

Communicate with the host computer
through other PLCs in the network. (Convert
from host link to network protocol.)
263

Serial Communications Section 6-3
2. The FINS command is transmitted from the PLC with a host link header
and terminator attached. A program must be prepared in the host comput-
er to analyze the FINS commands and return the proper responses.

Procedure

Host Link Commands The following table lists the host link commands. Refer to the C-series Host
Link Units System Manual (W143) for more details.

Set the PLC Setup from a Pro-
gramming Device.

(Settings such as the communica-
tions mode and parameters.)

Programming Console
Peripheral port: Addresses 144, 145, and 147
RS-232C port: Addresses 160 to 163
Be sure to set the communications mode to host link.
(Refer to CX-Programmer User Manual for CX-Programmer procedures.)

Power OFF

Connect the host computer and
CPU Unit.

Set the DIP switch on the front of
the CPU Unit.

Turn pin 4 ON when using the peripheral port.
Turn pin 5 OFF when using the RS-232C port.

Power ON

Host computer to PLC PLC to Host computer

Issue host link
commands from
the host computer.

Issue FINS
commands from
the host computer.

Execute SEND/RECV/CMND
instructions in the PLC’s program.

Receive responses in the host
computer. (A program is required in
the host computer.)

Header
code

Name Function

RR CIO AREA READ Reads the contents of the specified number of CIO Area words, starting
from the specified word.

RL LINK AREA READ Reads the contents of the specified number of Link Area words, starting
from the specified word.

RH HR AREA READ Reads the contents of the specified number of Holding Area words,
starting from the specified word.

RC PV READ Reads the contents of the specified number of timer/counter PVs
(present values), starting from the specified timer/counter.

RG T/C STATUS READ Reads the status of the Completion Flags of the specified number of
timers/counters, starting from the specified timer/counter.

RD DM AREA READ Reads the contents of the specified number of DM Area words, starting
from the specified word.

RJ AR AREA READ Reads the contents of the specified number of Auxiliary Area words,
starting from the specified word.
264

Serial Communications Section 6-3
RE EM AREA READ Reads the contents of the specified number of EM Area words, starting
from the specified word.

WR CIO AREA WRITE Writes the specified data (word units only) to the CIO Area, starting
from the specified word.

WL LINK AREA WRITE Writes the specified data (word units only) to the Link Area, starting
from the specified word.

WH HR AREA WRITE Writes the specified data (word units only) to the Holding Area, starting
from the specified word.

WC PV WRITE Writes the PVs (present values) of the specified number of timers/
counters, starting from the specified timer/counter.

WD DM AREA WRITE Writes the specified data (word units only) to the DM Area, starting from
the specified word.

WJ AR AREA WRITE Writes the specified data (word units only) to the Auxiliary Area, starting
from the specified word.

WE EM AREA WRITE Writes the specified data (word units only) to the EM Area, starting from
the specified word.

R# SV READ 1 Reads the 4-digit BCD constant or word address in the SV of the spec-
ified timer/counter instruction.

R$ SV READ 2 Searches for the specified timer/counter instruction beginning at the
specified program address and reads the 4-digit constant or word
address in the SV.

R% SV READ 3 Searches for the specified timer/counter instruction beginning at the
specified program address and reads the 4-digit BCD constant or word
address in the SV.

W# SV CHANGE 1 Changes the 4-digit BCD constant or word address in the SV of the
specified timer/counter instruction.

W$ SV CHANGE 2 Searches for the specified timer/counter instruction beginning at the
specified program address and changes the 4-digit constant or word
address in the SV.

W% SV CHANGE 3 Searches for the specified timer/counter instruction beginning at the
specified program address and changes the 4-digit constant or word
address in the SV.

MS STATUS READ Reads the operating status of the CPU Unit (operating mode, force-set/
reset status, fatal error status).

SC STATUS CHANGE Changes the CPU Unit’s operating mode.

MF ERROR READ Reads and clears errors in the CPU Unit (non-fatal and fatal).

KS FORCE SET Force-sets the specified bit.

KR FORCE RESET Force-resets the specified bit.

FK MULTIPLE FORCE SET/RESET Force-sets, force-resets, or clears the forced status of the specified
bits.

KC FORCE SET/RESET CANCEL Cancels the forced status of all force-set and force-reset bits.

MM PLC MODEL READ Reads the model type of the PLC.

TS TEST Returns, unaltered, one block of data transmitted from the host com-
puter.

RP PROGRAM READ Reads the contents of the CPU Unit’s user program area in machine
language (object code).

WP PROGRAM WRITE Writes the machine language (object code) program transmitted from
the host computer into the CPU Unit’s user program area.

MI I/O TABLE GENERATE Creates a registered I/O table with the actual I/O table.

QQMR COMPOUND COMMAND Registers the desired bits and words in a table.

QQIR COMPOUND READ Reads the registered words and bits from I/O memory.

XZ ABORT (command only) Aborts the host link command that is currently being processed.

Header
code

Name Function
265

Serial Communications Section 6-3
FINS Commands The following table lists the FINS commands. Refer to the FINS Commands
Reference Manual (W227) for more details.

�� INITIALIZE (command only) Initializes the transmission control procedure of all PLCs connected to
the host computer.

IC Undefined command
(response only)

This response is returned if the header code of a command was not
recognized.

Header
code

Name Function

Type Command
code

Name Function

I/O Memory
Area Access

01 01 MEMORY AREA READ Reads consecutive data from the I/O memory area.

01 02 MEMORY AREA WRITE Writes consecutive data to the I/O memory area.

01 03 MEMORY AREA FILL Fills the specified range of I/O memory with the same
data.

01 04 MULTIPLE MEMORY AREA
READ

Reads non-consecutive data from the I/O memory area.

01 05 MEMORY AREA TRANSFER Copies and transfers consecutive data from one part of
the I/O memory area to another.

Parameter
Area Access

02 01 PARAMETER AREA READ Reads consecutive data from the parameter area.

02 02 PARAMETER AREA WRITE Writes consecutive data to the parameter area.

02 03 PARAMETER AREA FILL Fills the specified range of the parameter area with the
same data.

Program Area
Access

03 06 PROGRAM AREA READ Reads data from the user program area.

03 07 PROGRAM AREA WRITE Writes data to the user program area.

03 08 PROGRAM AREA CLEAR Clears the specified range of the user program area.

Execution
Control

04 01 RUN Switches the CPU Unit to RUN, MONITOR, or DEBUG
mode.

04 02 STOP Switches the CPU Unit to PROGRAM mode.

Configuration
Read

05 01 CONTROLLER DATA READ Reads CPU Unit information.

05 02 CONNECTION DATA READ Reads the model numbers of the specified Units.

Status Read 06 01 CONTROLLER STATUS READ Reads the CPU Unit’s status information.

06 20 CYCLE TIME READ Reads the average, maximum, and minimum cycle
times.

Clock Access 07 01 CLOCK READ Reads the clock.

07 02 CLOCK WRITE Sets the clock.

Message
Access

09 20 MESSAGE READ/CLEAR Reads/clears messages and FAL(S) messages.

Access Right 0C 01 ACCESS RIGHT ACQUIRE Acquires the access right if no other device holds it.

0C 02 ACCESS RIGHT FORCED
ACQUIRE

Acquires the access right even if another device cur-
rently holds it.

0C 03 ACCESS RIGHT RELEASE Releases the access right regardless of what device
holds it.

Error Access 21 01 ERROR CLEAR Clears errors and error messages.

21 02 ERROR LOG READ Reads the error log.

21 03 ERROR LOG CLEAR Clears the error log pointer to zero.
266

Serial Communications Section 6-3
Message Communications Functions

The FINS commands listed in the table above can also be transmitted through
the network from other PLCs to the CPU Unit. Observe the following points
when transmitting FINS commands through the network.

• CPU Bus Units (such as Controller Link Units or Ethernet Units) must be
mounted in the local PLC and destination PLC to transmit FINS com-
mands.

• FINS commands are issued with CMND(490) from the CPU Unit’s pro-
gram.

• FINS commands can be transmitted over three networks at most. The
networks can be the same type or different types.

Refer to the CPU Bus Unit’s Operation Manual for more details on the mes-
sage communications functions.

File Memory 22 01 FILE NAME READ Reads the file memory’s file information.

22 02 SINGLE FILE READ Reads the specified amount of data from the specified
point in a file.

22 03 SINGLE FILE WRITE Writes the specified amount of data from the specified
point in a file.

22 04 FILE MEMORY FORMAT Formats file memory.

22 05 FILE DELETE Deletes the specified files from file memory.

22 07 FILE COPY Copies a file within file memory or between two file
memory devices in a system.

22 08 FILE NAME CHANGE Changes a file name.

22 0A I/O MEMORY AREA FILE
TRANSFER

Transfers or compares data between the I/O memory
area and file memory.

22 0B PARAMETER AREA FILE
TRANSFER

Transfers or compares data between the parameter
area and file memory.

22 0C PROGRAM AREA FILE TRANS-
FER

Transfers or compares data between the program area
and file memory.

22 15 CREATE/DELETE DIRECTORY Creates or deletes a directory.

Forced Status 23 01 FORCED SET/RESET Force-sets, force-resets, or clears the forced status of
the specified bits.

23 02 FORCED SET/RESET CANCEL Cancels the forced status of all force-set and force-reset
bits.

Type Command
code

Name Function

Serial Communications Unit Serial Communications Unit

FINS command

CMND
267

Serial Communications Section 6-3
6-3-2 No-protocol Communications
The following table lists the no-protocol communication functions available in
CS/CJ PLCs.

Note A transmission delay or “no-protocol mode delay” can be specified in the PLC
Setup (address 162). This setting causes a delay of up to 30 seconds
between execution of TXD(236) and the transmission of data from the speci-
fied port.

Procedure

Message Frame Formats

Data can be placed between a start code and end code for transmission by
TXD(236) and frames with that same format can be received by RXD(235).
When transmitting with TXD(236), just the data from I/O memory is transmit-
ted, and when receiving with RXD(235), just the data itself is stored in I/O

Transfer direction Method Max. amount
of data

Frame format Other
functionsStart code End code

Data transmission
(PLC � External device)

Execution of TXD(236)
in the program*

256 bytes Yes: 00 to FF
No: None

Yes:
00 to FF or CR+LF
No: None

Send delay
time (delay
between TXD
execution and
sending data
from specified
port): 0 to
99,990 ms
(unit: 10 ms)

Data reception
(External device � PLC)

Execution of RXD(235)
in the program

256 bytes ---

Set the PLC Setup from a Pro-
gramming Device.

(Settings such as the communica-
tions mode and parameters.)

Programming Console
Set addresses 160 to 163. In particular, set
the communications mode to no-protocol
mode, set the start code, end code, amount of
data, and no-protocol mode delay.
(Refer to CX-Programmer User Manual for
CX-Programmer procedures.)

Power OFF

Connect the CPU Unit and external
device through the RS-232C port

Set the DIP switch on the front of
the CPU Unit.

Turn pin 5 OFF.

Power ON

PLC � External device External device � PLC

Execute TXD(236). Execute RXD(235).
268

Serial Communications Section 6-3
memory. Up to 256 bytes (including the start and end codes) can be trans-
ferred in no-protocol mode.

The following table shows the message formats that can be set for transmis-
sions and receptions in no-protocol mode. The format is determined by the
start code (ST) and end code (ED) settings in the PLC Setup.

• When more than one start code is used, the first start code will be effec-
tive.

• When more than one end code is used, the first end code will be effective.

Note 1. If the data being transferred contains the end code, the data transfer will
be stopped midway. In this case, change the end code to CR+LF.

2. There is a setting in the PLC Setup (address 162: no-protocol mode delay)
that will delay the transmission of data after the execution of TXD(236).

Refer to the CJ-series Programmable Controllers Programming Manual
(W340) for more details on TXD(236) and RXD(235).

6-3-3 NT Link (1:N Mode)
In the CS/CJ Series, communications are possible with PTs (Programmable
Terminals) using NT Links (1:N mode).

Note Communications are not possible using the 1:1-mode NT Link protocol.

High-speed NT Links are possible in addition to the previous standard NT
Links by using the PT system menu and the following PLC Setup settings (not
supported by CS-series pre-EV1 CS1 CPU Units). High-speed NT Links are
possible, however, only with the NT31(C)-V2 or NT631(C)-V2 PTs.

Start code
setting

End code setting

No Yes CR+LF

No data
(data: 256 bytes max.)

data+ED
(data: 255 bytes max.)

data+CR+LF
(data: 254 bytes max.)

Yes ST+data

(data: 255 bytes max.)

ST+data+ED

(data: 254 bytes max.)

ST+data+CR+LF

(data: 253 bytes max.)

No-protocol mode
transmission delay

Execution of TXD(236)

Transmission
Time
269

Serial Communications Section 6-3
PLC Setup

Note Set the baud rate to 115,200 bps when making settings with the CX-Program-
mer.

PT System Menu Set the PT as follows:

1,2,3... 1. Select NT Link (1:N) from Comm. A Method or Comm. B Method on the
Memory Switch Menu under the System Menu on the PT Unit.

2. Press the SET Touch Switch to set the Comm. Speed to High Speed.

6-3-4 Serial PLC Links (CJ1M CPU Units Only)

Overview
Serial PLC Links are supported by CJ1M CPU Units only. They allow data to
be exchanged among CJ1M CPU Units via the built-in RS-232C ports without
requiring special programming. Words are allocated in memory in the Serial
PLC Link Words (CIO 3100 to CIO 3199). RS-232C connections can be used
between CPU Units, or RS-422A/485 connections can be used by connecting
RS-232C-to-RS-422A/485 converters to the RS-232C ports. CJ1W-CIF11
RS-422A Converters can be used to convert between RS-232C and RS-
422A/485.

A PT that is set for NT Link (1:N) communications can also be used together
on the same network. The polled PT uses the network to communicate in an
NT link (1:N) with the polling CPU Unit. When a PT is connected, however, the
addresses in the Serial PLC Link Words corresponding to the PT’s unit num-
ber are undefined.

Communications
port

Programming
Console setting

address

Name Settings
contents

Default values Other conditions

Peripheral port 144
Bits: 8 to 11

Serial communica-
tions mode

02 Hex: NT Link
(1:N mode)

00 Hex: Host Link Turn ON pin 4 on
the CPU Unit DIP
switch.145

Bits: 0 to 7
Baud rate 00 to 09 Hex:

Standard NT Link
0A Hex: High-
speed NT Link
(see note 1)

00 Hex: Standard
NT Link

150
Bits: 0 to 3

NT Link mode
maximum unit
number

0 to 7 Hex 0 Hex (Max. unit
No. 0)

RS-232C port 160
Bits: 8 to 11

Serial communica-
tions mode

02 Hex: NT Link
(1:N mode)

00 Hex: Host Link Turn OFF pin 5 on
the CPU Unit DIP
switch.161

Bits: 0 to 7
Baud rate 00 to 09 Hex:

Standard NT Link
0A Hex: High-
speed NT Link
(see note 1)

00 Hex: Standard
NT Link

166
Bits: 0 to 3

NT Link mode
maximum unit
number

0 to 7 Hex 0 Hex (Max. unit
No. 0)

270

Serial Communications Section 6-3
Specifications

System Configuration

Note Up to 8 Units, including the PT and Polled Units, can be connected to the Poll-
ing Unit when a PT set for Serial PLC Link communications is on the same
network.

Data Refresh Methods
The following two methods can be used to refresh data.

• Complete link method

• Polling Unit link method

Complete Link Method The data from all nodes in the Serial PLC Links are reflected in both the Poll-
ing Unit and the Polled Units. (The only exceptions are the address allocated
to the connected PT’s unit number and the addresses of Polled Units that are
not present in the network. These data areas are undefined in all nodes.)

Item Specifications

Connection method RS-232C or RS-422A/485 connection via the CPU Unit’s RS-
232C port.

Allocated data area Serial PLC Link Words:
CIO 3100 to CIO 3199 (Up to 10 words can be allocated for
each CPU Unit.)

Number of Units 9 Units max., comprising 1 Polling Unit and 8 Polled Units (A
PT can be placed on the same network in an NT Link (1:N),
but it must be counted as one of the 8 Polled Units.)

RS-422/485

RS-232C

CPU Unit
Polling Unit

CJ1W-CIF11
RS-422A
Converter

CPU Unit
Polled Unit No. 0

CPU Unit
Polled Unit No. 1

PT
Unit No. 2

CPU Unit
Polled Unit No. 3

Number of Polled Units: 8 max.
(See note.)

NS-AL002 when using
an NS-series PT

CPU Unit
Polling Unit

CPU Unit
Polled Unit No. 0OR
271

Serial Communications Section 6-3
Example: Complete link method, highest unit number: 3.

In the following diagram, Polled Unit No. 2 is either a PT or is a Unit not
present in the network, so the area allocated for Polled Unit No. 2 is undefined
in all nodes.

Polling Unit Link Method The data for all the Polled Units in the Serial PLC Links ar reflected in the Poll-
ing Unit only, and each Polled Unit reflects the data of the Polling Unit only.
The advantage of the Polling Unit link method is that the address allocated for
the local Polled Unit data is the same in each Polled Unit, allowing data to be
accessed using common ladder programming. The areas allocated for the
unit numbers of the PT or Polled Units not present in the network are unde-
fined in the Polling Unit only.

Example: Polling Unit link method, highest unit number: 3.

In the following diagram, Polled Unit No. 2 is a PT or a Unit not participating in
the network, so the corresponding area in the Polling Unit is undefined.

Polling Unit Polled Unit No.0 Polled Unit No.1 Polled Unit No.3

Local area Polling Unit Polling Unit Polling Unit
Polled Unit
No.0 Local area

Polled Unit
No.0

Polled Unit
No.0

Polled Unit
No.1

Polled Unit
No.1 Local area Polled Unit

No.1

Undefined Undefined Undefined Undefined
Polled Unit
No.3

Polled Unit
No.3

Polled Unit
No.3 Local area

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

Polling Unit Polled Unit No.0 Polled Unit No.1 Polled Unit No.3

Local area Polling Unit Polling Unit Polling Unit
Polled Unit
No.0 Local area Local area Local area
Polled Unit
No.1 (Not used.)

(Not used.)

(Not used.)

(Not used.)

(Not used.)

(Not used.)

(Not used.)

(Not used.)

(Not used.)

(Not used.)

(Not used.)

(Not used.)

(Not used.)

(Not used.)

(Not used.)

(Not used.)

(Not used.)

(Not used.)

(Not used.)

(Not used.)

(Not used.)

Undefined
Polled Unit
No.3

(Not used.)

(Not used.)

(Not used.)

(Not used.)
272

Serial Communications Section 6-3
Allocated Words
Complete Link Method

Polling Unit Link Method

Address Link words 1 word 2 words 3 words to 10 words

CIO 3100

Serial PLC
Link Words

Polling Unit CIO 3100 CIO 3100 to
CIO 3101

CIO 3100 to
CIO 3102

CIO 3100 to
CIO 3109

Polled Unit No. 0 CIO 3101 CIO 3102 to
CIO 3103

CIO 3103 to
CIO 3105

CIO 3110 to
CIO 3119

Polled Unit No. 1 CIO 3102 CIO 3104 to
CIO 3105

CIO 3106 to
CIO 3108

CIO 3120 to
CIO 3129

Polled Unit No. 2 CIO 3103 CIO 3106 to
CIO 3107

CIO 3109 to
CIO 3111

CIO 3130 to
CIO 3139

Polled Unit No. 3 CIO 3104 CIO 3108 to
CIO 3109

CIO 3112 to
CIO 3114

CIO 3140 to
CIO 3149

Polled Unit No. 4 CIO 3105 CIO 3110 to
CIO 3111

CIO 3115 to
CIO 3117

CIO 3150 to
CIO 3159

Polled Unit No. 5 CIO 3106 CIO 3112 to
CIO 3113

CIO 3118 to
CIO 3120

CIO 3160 to
CIO 3169

Polled Unit No. 6 CIO 3107 CIO 3114 to
CIO 3115

CIO 3121 to
CIO 3123

CIO 3170 to
CIO 3179

Polled Unit No. 7 CIO 3108 CIO 3116 to
CIO 3117

CIO 3124 to
CIO 3126

CIO 3180 to
CIO 3189

CIO 3199 Not used. CIO 3109
to
CIO 3199

CIO 3118 to
CIO 3199

CIO 3127 to
CIO 3199

CIO 3190 to
CIO 3199

Address Link words 1 word 2 words 3 words to 10 words

CIO 3100

Serial PLC
Link Words

Polling Unit CIO 3100 CIO 3100 to
CIO 3101

CIO 3100 to
CIO 3102

CIO 3100 to
CIO 3109

Polled Unit No. 0 CIO 3101 CIO 3102 to
CIO 3103

CIO 3103 to
CIO 3105

CIO 3110 to
CIO 3119

Polled Unit No. 1 CIO 3101 CIO 3102 to
CIO 3103

CIO 3103 to
CIO 3105

CIO 3110 to
CIO 3119

Polled Unit No. 2 CIO 3101 CIO 3102 to
CIO 3103

CIO 3103 to
CIO 3105

CIO 3110 to
CIO 3119

Polled Unit No. 3 CIO 3101 CIO 3102 to
CIO 3103

CIO 3103 to
CIO 3105

CIO 3110 to
CIO 3119

Polled Unit No. 4 CIO 3101 CIO 3102 to
CIO 3103

CIO 3103 to
CIO 3105

CIO 3110 to
CIO 3119

Polled Unit No. 5 CIO 3101 CIO 3102 to
CIO 3103

CIO 3103 to
CIO 3105

CIO 3110 to
CIO 3119

Polled Unit No. 6 CIO 3101 CIO 3102 to
CIO 3103

CIO 3103 to
CIO 3105

CIO 3110 to
CIO 3119

Polled Unit No. 7 CIO 3101 CIO 3102 to
CIO 3103

CIO 3103 to
CIO 3105

CIO 3110 to
CIO 3119

CIO 3199 Not used. CIO 3102
to
CIO 3199

CIO 3104 to
CIO 3199

CIO 3106 to
CIO 3199

CIO 3120 to
CIO 3199
273

Serial Communications Section 6-3
Procedure
The Serial PLC Links operate according to the following settings in the PLC
Setup.

Settings at the Polling Unit

1,2,3... 1. Set the serial communications mode of the RS-232C communications port
to Serial PLC Links (Polling Unit).

2. Set the link method to the Complete Link Method or Polling Unit Link Meth-
od.

3. Set the number of link words (up to 10 words for each Unit).

4. Set the maximum unit number in the Serial PLC Links (1 to 7).

Settings at the Polled Units

1,2,3... 1. Set the serial communications mode of the RS-232C communications port
to Serial PLC Links (Polled Unit).

2. Set the unit number of the Serial PLC Link Polled Unit.

PLC Setup
Settings at the Polling Unit

Note Automatically allocates 10 words (A hex) when the default setting of 0 hex is
used.

Settings at the Polled Unit

Note The default baud rate is 38.4 kbps

Item PLC address Set value Default Refresh timing

Word Bit

RS-232C
port setting

Serial communica-
tions mode

160 11 to 08 8 hex: Serial PLC Links
Polling Unit

0 hex Every cycle
(except immediate
refresh when exe-
cuting the
STUP(237) instruc-
tion)

Port baud rate 161 07 to 00 00 hex: Standard
0A hex: High-speed

00 hex

Link method 166 15 0: Complete links
1: Polling Unit links

0

Number of link
words

07 to 04 1 to A hex 0 hex (See
note.)

Highest unit num-
ber

03 to 00 0 to 7 hex 0 hex

Item PLC address Set value Default Refresh timing

Word Bit

RS-232C
port set-
tings

Serial communica-
tions mode

160 11 to 08 7 hex: Serial PLC Link
Polled Unit

0 hex Every cycle

(except immediate
refresh when exe-
cuting the
STUP(237) instruc-
tion)

Port baud rate 161 07 to 00 00 hex: Standard

0A hex: High-speed

00 hex
(See note.)

Polled Unit unit
number

167 03 to 00 0 to 7 hex 0 hex
274

Serial Communications Section 6-3
Related Auxiliary Area Flags

Note In the same way as for the existing NT Link (1:N), the status (communicating/
not communicating) of PTs in the Serial PLC Link can be checked from the
Polling Unit (CPU Unit) by reading the RS-232C Port Communicating with PT
Flag (A393 bits 00 to 07 for unit numbers 0 to 7).

Name Address Details Read/write Refresh timing

RS-232C Port
Communica-
tions Error Flag

A39204 Turns ON when a com-
munications error occurs
at the RS-232C port.
1: Error
0: Normal

Read • Cleared when power is turned ON.
• Turns ON when a communications error

occurs at the RS-232C port.
• Turns OFF when the port is restarted.
• Disabled in peripheral bus mode and NT

link mode.

RS-232C Port
Communicating
with PT Flag
(See note.)

A39300 to
A39307

When the RS-232C port
is being used in NT link
mode, the bit correspond-
ing to the Unit performing
communications will be
ON. Bits 00 to 07 corre-
spond to unit numbers 0
to 7, respectively.
1: Communicating
0: Not communicating

Read • Cleared when power is turned ON.

• Turns ON the bit corresponding to the
unit number of the PT/Polled Unit that is
communicating via the RS-232C port in
NT link mode or Serial PLC Link mode.

• Bits 00 to 07 correspond to unit numbers
0 to 7, respectively.

RS-232C Port
Restart Bit

A52600 Turn ON this bit to restart
the RS-232C port.

Read/write • Cleared when power is turned ON.
• Turned ON when restarting the RS-232C

port, (except when communicating in
peripheral bus mode).

Note: Depending on the system, the bit may
automatically turn OFF when restart
processing is completed.

RS-232C Port
Error Flag

A52800 to
A52807

When an error occurs at
the RS-232C port, the
corresponding error code
is stored.

Bit 00: Not used.
Bit 01: Not used.
Bit 02: Parity error

Bit 03: Framing error
Bit 04: Overrun error
Bit 05: Timeout error

Bit 06: Not used.
Bit 07: Not used.

Read/write • Cleared when power is turned ON.

• When an error occurs at the RS-232C
port, the corresponding error code is
stored.

• Depending on the system, the flag may
be cleared when the RS-232C port is
restarted.

• Disabled during peripheral bus mode.
• In NT link mode, only bit 05 (timeout

error) is enabled.

In Serial PLC Link mode, only the following
bits are enabled.
Error at the Polling Unit:
Bit 05: Timeout error
• CHECK Error at the Polled Unit:

Bit 05: Timeout error
Bit 04: Overrun error
Bit 03: Framing error

RS-232C Port
Settings
Changed Flag

A61902 Turns ON when the com-
munications conditions of
the RS-232C port are
being changed.
1: Changed
0: No change

Read/write • Cleared when power is turned ON.
• Turns ON while communications condi-

tions settings for the RS-232C port are
being changed.

• Turns ON when the CHANGE SERIAL
PORT SETUP instruction (STUP(237)) is
executed.

• Turns OFF again when the changes to
settings are completed.
275

Changing the Timer/Counter PV Refresh Mode Section 6-4
6-4 Changing the Timer/Counter PV Refresh Mode

6-4-1 Overview
Previously, CS1 CPU Units used only BCD for the timer/counter PV refresh
mode. Therefore, all timer/counter settings were input as BCD values. Other
CPU Units (see notes 1 and 2) can use either BCD mode or binary mode to
refresh the present values of timer and counter instructions (see note 3).

When binary mode is used, the previous timer/counter setting time of 0 to
9999 can be expanded to 0 to 65535. Binary data calculated using other
instructions can also be used for the timer/counter set values. The timer/
counter PV refresh mode can also be specified when the timer/counter set
value is specified as an address (indirect specification). (The setting of the
mode as BCD mode or binary mode will determine whether the contents of
the addressed word are taken as a BCD or binary value.)

There are differences in the instruction operands for BCD mode and binary
mode, however, so check and understand the differences between the BCD
and binary modes before changing the timer/counter PV refresh mode.

Note 1. Here, the CPU Units other than CS1 CPU Units are as follows:

• CS1-H CPU Units

• CJ1-H CPU Units

• CJ1M CPU Units

2. When the mnemonic is monitored from the Programming Console for CS1-
H/CJ1-H CPU Units manufactured on or before 31 May 2002 with the tim-
er/counter PV refresh mode set to binary mode, the mnemonic of the bina-
ry is displayed as the mnemonic or the BCD instruction (example: TIMX
#0000 &16 is displayed as TIM #0000 &16), but operations are performed
in binary mode.

3. The PV refresh mode can be selected with CX-Programmer Ver 3.0 only.
Mode selection is not supported by CX-Programmer Ver 2.1 or earlier, or
the Programming Consoles.

4. CX-Programmer Ver. 2.1 or earlier cannot read user programs for the CPU
Unit containing binary-mode instructions, but it can read those set using
BCD-mode instructions.
276

Changing the Timer/Counter PV Refresh Mode Section 6-4
6-4-2 Functional Specifications

Note When the mnemonic is monitored from the Programming Console for CS1-H/
CJ1-H CPU Units manufactured on or before 31 May 2002 with the timer/
counter PV refresh mode set to binary mode, the mnemonic of the binary is
displayed as the mnemonic or the BCD instruction (example: TIMX #0000
&16 is displayed as TIM #0000 &16), but operations are performed in binary
mode.

Checking the CPU Unit Lot Number

1,2,3... 1. The lot number is printed on the bottom of the front panel (CS Series) or
the right corner of the top of the Unit (CJ Series), and is comprised of the
last two digits of the year, the month, and the day, in that order, as shown
in the following diagram.
Example: 020601 (Manufactured on 1 June 2002.)

2. Check which mode is selected by putting the CX-Programmer online,
opening the I/O Table Window, and selecting Unit Information - CPU
Unit. The lot No. will be displayed in the same format as shown in the
above diagram, i.e., comprised of the last two digits of the year, the month,
and the day, in that order.

Item Details

Timer/counter PV refresh
mode setting method

Must be set using CX-Programmer Ver.3.0�"not sup-
ported by CX-Programmer Ver 2.1 or earlier).
Set in the PLC properties of CX-Programmer Ver.3.0.

Supported CPU Units CS1-H/CJ1-H CPU Units from Lot No. 020601 (man-
ufactured on 1 June 2002) or later (see note 1), and
CJ1M CPU Units.

Mode BCD mode Binary mode

Mnemonic Same as previ-
ous models
Example: TIM

X added to BCD mode mnemonic
Example: TIMX

Function code Same as previ-
ous models

New codes

PV/SV range #0000 to #9999 &0 to &65536 #0000 to #FFFF

PV display on Programming
Device�"CX-Programmer
Ver.3.0 or Programming Con-
soleC3

BCD
Example: #0100

Decimal
Example: &100

Hexadecimal
Example: #64

020601

020601

The leftmost 6 digits indicate the date code.

CJ-series CPU UnitCS-series CPU Unit
277

Changing the Timer/Counter PV Refresh Mode Section 6-4
6-4-3 BCD Mode/Binary Mode Selection and Confirmation
When writing a new program, the BCD mode/binary mode is selected in the
PLC property settings in CX-Programmer Ver 3.0.

Note The BCD mode/binary mode selection is supported by CX-Programmer Ver
3.0 or later only. CX-Programmer Ver 2.1 or earlier versions do not allow
mode selection.

BCD Mode/Binary Mode Selection

1,2,3... 1. Select the PLC name, click the right mouse button, and select PLC Prop-
erties.

2. Click the General Tab, and select Execute Timers/Counters as Binary.

• Not selected (default): BCD mode

• Selected : Binary mode

The timer/counter PV refresh mode set value set under the PLC properties
will be stored in the CPU Unit’s user memory when the user program is
transferred from the CX-Programmer to the CPU Unit.

0 0 0 0 0 1 TIMX

& 1 0

0 0 0 0 0 1 TIM

#0010

TIM

0000

#0010

TIMX

0000

&10

Using BCD mode

Using binary mode

CX-Programmer
Ver.3.0 BCD/binary mode is

selected under the PLC
properties.
The Programming Console
cannot be used to select the
mode.

Transferring
user program

CS1-H/CJ1-H/CJ1M
CPU Unit

Timer/counter PV
refresh mode setting
(See note.)

User program

Mnemonics:
Example using BCD mode: TIM
Example using binary mode: TIMX

Note: The timer/counter PV
refresh mode setting is
stored in the user
program.

Programming
Console Using BCD mode

Using binary mode

Set value

Set value

Select this check box to enable the setting.
278

Changing the Timer/Counter PV Refresh Mode Section 6-4
When the setting is changed, the following dialog box will be displayed au-
tomatically.

Click the OK Button to execute the program check. The program check
results will be displayed in the output window.

Example: The TIM instruction has been used even though the mode has been
changed to binary mode.

BCD Mode/ Binary Mode Confirmation
A09915 in the Auxiliary Area (Timer/Counter PV Refresh Mode Flag) can be
used to check whether a CPU Unit is operating in BCD mode or binary mode.

6-4-4 BCD Mode/Binary Mode Mnemonics and Data

BCD Mode/Binary Mode Mnemonics
Binary mode mnemonics are indicated by the suffix X added to the BCD mne-
monic.

Example: Mnemonics for the TIMER instruction

BCD mode: TIM

Binary mode: TIMX

Cancel

TIM is displayed
in red.

The program check results are displayed in the output window.
Example: The timer/counter operation mode is different, so TIM
cannot be used.

Name Address Details

Timer/Counter PV
Refresh Mode Flag

A09915 0: BCD mode
1: Binary mode
279

Changing the Timer/Counter PV Refresh Mode Section 6-4
BCD Mode/Binary Mode Data Display

Note When using the CX-Programmer in either BCD or binary mode, if the numeri-
cal value is input without including the input/display symbol # or & indicating
the constant, (e.g., TIM 0000 0010), the timer/counter set value will be input
as an address (e.g., the value in CIO word 0010 will be used as the set value).

6-4-5 Restrictions
• BCD mode and binary mode cannot be used together in the same CPU

Unit.

• When the Programming Console is used to create a new user program, or
to clear memory, the timer/counter PV refresh mode is fixed in BCD
mode.

• When CX-Programmer Ver. 3.0 is used to place the CPU Unit online, the
set value that is stored in the CPU Unit’s user memory for the timer/
counter PV refresh mode will be automatically used. If the CPU setting is
different from the setting for the CX-Programmer project, an error will
occur, and the online connection will not be possible. The following mes-
sage will be displayed.

Select whether to change the CPU Unit setting to that for the CX-Programmer
project or change the CX-Programmer project property setting to that for the
CPU Unit.

• CX-Programmer Ver. 2.1 or earlier cannot read user programs in the CPU
Unit that are set using binary mode, but can read those set using BCD
mode.

PLC propertY Meaning of input
and display

symbols

Setting range Example: Timer
number: 0000,
Set value: 10 s

BCD mode The # symbol indi-
cates the instruction
value (a BCD value
when BCD mode is
used)

#0000 to #9999
or
#00000000 to
#99999999

Binary mode The & symbol indi-
cates a decimal
value.

&0 to &65535
or
&0 to &4294967295

The # symbol indi-
cates the instruction
value (a hexadeci-
mal value when BCD
mode is used.)

#0000 to #FFFF

or
#0000 to #FFFFFFFF

TIM

0000

#0010

TIMX

0000

&10

TIMX

0000

#A
280

Changing the Timer/Counter PV Refresh Mode Section 6-4
• The differences between the CX-Programmer and Programming Console
operations when an incorrect timer/counter PV refresh mode instruction is
input are as follows:

• CX-Programmer:
An error will occur if an instruction is input for a different mode than that
set as the timer/counter PV refresh mode under PLC properties.
Example: When the PLC in the project is set to binary mode, an error
will occur if TIM is input as the mnemonic. When BCD mode is set, an
error will occur if TIMX is input as the mnemonic.

• Programming Console:
When a function code is input for an instruction for a different mode
that for the timer/counter PV refresh mode set in the CPU Unit, the
mnemonic will automatically be changed to that for the timer/counter
PV refresh mode set in the CPU Unit.

6-4-6 Instructions and Operands

Instructions
Instruction

type
Name Mnemonic

BCD mode Binary mode

Timer and
Counter
Instructions

TIMER (100 ms) TIM TIMX(550)

HIGH-SPEED
TIMER (10 ms)

TIMH(015) TIMHX(551)

ONE-MS TIMER
(1 ms)

TMHH(540) TMHHX(552)

ACCUMULATIVE
TIMER (100 ms)

TTIM(087) TTIMX(555)

LONG TIMER
(100 ms)

TIML(542) TIMLX(553)

MULTI-OUTPUT
TIMER (100 ms)

MTIM(543) MTIMX(554)

COUNTER CNT CNTX(546)

REVERSIBLE
COUNTER

CNTR(012) CNTRX(548)

RESET TIMER/
COUNTER

CNR(545) CNRX(547)

Block pro-
gram instruc-
tions

TIMER WAIT (100
ms)

TIMW(813) TIMWX(816)

HIGH-SPEED
TIMER WAIT (10 ms)

TMHW(815) TMHWX(817)

COUNTER WAIT CNTW(814) CNTWX(818)
281

Changing the Timer/Counter PV Refresh Mode Section 6-4
Instructions and Operands
Timer and Counter Instructions

TIMER (100 ms)

HIGH-SPEED TIMER (10 ms)

ONE-MS TIMER (1 ms)

ACCUMULATIVE TIMER (100 ms)

LONG TIMER (100 ms)

MULTI-OUTPUT TIMER (100 ms)

Instruction name BCD mode Binary mode

Mnemonic TIM TIMX(550)

S (timer set value) #0000 to #9999 (BCD) &0 to &65535 (decimal)
or #0000 to #FFFF (hexa-
decimal)

Setting time (unit: 0.1 s) 0 to 999.9 s 0 to 6,553.5 s

Instruction name BCD mode Binary mode

Mnemonic TIMH(015) TIMHX(551)

S (timer set value) #0000 to #9999�"BCDC3 &0 to &65535 (decimal)
or #0000 to #FFFF (hexa-
decimal)

Setting time (unit: 0.01 s) 0 to 99.99 s 0 to 655.35 s

Instruction name BCD mode Binary mode

Mnemonic TMHH(540) TMHHX(552)

S (timer set value) #0000 to #9999�"BCDC3 &0 to &65535 (decimal)
or #0000 to #FFFF (hexa-
decimal)

Setting time (unit: 0.001 s) 0 to 9.999 s 0 to 65.535 s

Instruction name BCD mode Binary mode

Mnemonic TTIM(087) TTIMX(555)

S (timer set value) #0000 to #9999�"BCDC3 &0 to &65535 (decimal)
or #0000 to #FFFF (hexa-
decimal)

Setting time (unit: 0.1 s) 0 to 999.9 s 0 to 6,553.5 s

Instruction name BCD mode Binary mode

Mnemonic TIML(542) TIMLX(553)

S, S+1 (timer set values) #00000000 to #99999999�
"BCDC3

&0 to &4294967295 (deci-
mal)
 or #0000 to #FFFFFFFF
(hexadecimal)

Setting time (unit: 0.1 s) 0 to 999.9 s 0 to 6,553.5 s

Instruction name BCD mode Binary mode

Mnemonic MTIM(543) MTIMX(554)

S to S-7 (each timer set
value)

#0000 to #9999�"BCDC3 &0 to &65535
or #0000 to #FFFF (hexa-
decimal)

Setting time (unit: 0.1 s) 0 to 999.9 s 0 to 6,553.5 s
282

Changing the Timer/Counter PV Refresh Mode Section 6-4
COUNTER

REVERSIBLE COUNTER

RESET TIMER/COUNTER

Block Program Instructions

TIMER WAIT (100 ms)

HIGH-SPEED TIMER WAIT (10 ms)

COUNTER WAIT

Instruction name BCD mode Binary mode

Mnemonic CNT CNTX(546)

S (counter set value) #0000 to #9999�"BCDC3 &0 to& 65535 (decimal)
or #0000 to #FFFF (hexa-
decimal)

Setting 0 to 9,999 times 0 to 65,535 times

Instruction name BCD mode Binary mode

Mnemonic CNTR(012) CNTRX(548)

S (counter set value) #0000 to #9999�"BCDC3 &0 to &65535 (decimal)
or #0000 to #FFFF (hexa-
decimal)

Setting 0 to 9,999 times 0 to 65,535 times

Instruction name BCD mode Binary mode

Mnemonic CNR(545) CNRX(547)

Instruction name BCD mode Binary mode

Mnemonic TIMW(813) TIMWX(816)

S (timer set value) #0000 or# 9999�"BCDC3 &0 to &65535 (decimal)
or #0000 to #FFFF (hexa-
decimal)

Setting time (unit: 0.1 s) 0 to 999.9 s 0 to 6,553.5 s

Instruction name BCD mode Binary mode

Mnemonic TMHW(815) TMHWX(817)

S (timer set value)
Unit: 0.01 s

#0000 to #9999�"BCDC3 &0 to &65535 (decimal)
or #0000 to #FFFF (hexa-
decimal)

Setting time (unit: 0.01 s) 0 to 999.9 s 0 to 655.35 s

Instruction name BCD mode Binary mode

Mnemonic CNTW(814) CNTWX(818)

S (counter set value) #0000 to #9999�"BCDC3 &0 to &65535 (decimal)
or #0000 to #FFFF (hexa-
decimal)

Setting 0 to 9,999 times 0 to 65,535 times
283

Using a Scheduled Interrupt as a High-precision Timer (CJ1M Only) Section 6-5
6-5 Using a Scheduled Interrupt as a High-precision Timer
(CJ1M Only)

When using a CJ1M CPU Unit, the following functions allow a scheduled
interrupt to be used as a high-precision timer.

• The scheduled interrupt timer can be input in units of 0.1 ms (high-preci-
sion interval timer).

• Resetting (i.e., restart) is possible using the MSKS(690) instruction (fixed
time to first interrupt).

• Internal timer PVs can be read using the MSKR(692) instruction (interval
timer PV reading)

These functions allow applications such as that shown in the following exam-
ple of a high-precision one-shot timer, where the input bit turning ON acts as a
trigger, causing the output bit to turn ON, and then turn OFF again after a
fixed interval.

Example:

1,2,3... 1. Input interrupt task starts when the built-in input bit turns ON.

2. Output bit A turns ON in the input interrupt task, and the MSKS(690) in-
struction is executed to perform a scheduled interrupt reset start.

3. After a fixed interval, the scheduled interrupt task starts, and output bit A
in the scheduled interrupt task turns OFF, and the MSKS(690) instruction
is executed to prohibit a scheduled interrupt.

6-5-1 Setting the Scheduled Interrupt to Units of 0.1 ms
The scheduled interrupt time is set using the PLC Setup’s scheduled interrupt
unit time setting and the MSKS(690) instruction.

With CJ1M CPU Units, the scheduled interrupt time can be set in units of
0.1 ms between a minimum interval of 0.5 ms and the maximum interval of
999.9 ms.

PLC Setup

Input interrupt task

MSKS
14

#0005
Scheduled interrupt task

MSKS
4

#0000

SET
A

A

Cyclic task Input
interrupt
ON

Output bit A
turns ON.

Scheduled interrupt
reset start.

Fixed interval
Example:
After 0.5 ms)

Output bit A
turns OFF.

Stop due to fixed
interrupt being
prohibited.

RESET

Item PLC address Set value Default Refresh timing

Word Bit

Scheduled inter-
rupt unit time set-
ting

195 00 to 03 0 hex:�10-ms unit
1 hex:�1-ms unit

2 hex:�0.1-ms unit�"CJ1M
CPU Units onlyC3

0 hex When operation starts.
284

Using a Scheduled Interrupt as a High-precision Timer (CJ1M Only) Section 6-5
6-5-2 Specifying a Reset Start with MSKS(690)
When CJ1M CPU Units are used and the MSKS(690) instruction is used to
start the scheduled interrupt, the internal timer can be reset before starting the
interrupt (this is called a reset start).

This method can be used to specify the time to the first interrupt without using
the CLI(691) instruction.

Scheduled interrupts are started by using the MSKS(690) instruction to set
the scheduled interrupt time (interval between two interrupts). After executing
the MSKS(690) instruction, however, the time required before the first sched-
uled interrupt task starts (first interrupt start time) is fixed only if the CLI(691)
instruction is specified. Therefore, CJ1M CPU Units provide an internal timer
reset start, allowing the time to the first interrupt to be set without using the
CLI(691) instruction.

MSKS(690) Instruction Operand (Only when Scheduled Interrupt Is Specified)

6-5-3 Reading the Internal Timer PV with MSKR(692)
CJ1M CPU Units allow reading the PV of the internal timer that measures the
scheduled interrupt time. The time is read from either the scheduled interrupt
start point or the previous scheduled interrupt point. The internal timer PV is
read by executing the MSKR(692) instruction. The unit of time depends on the
scheduled interrupt unit time setting in the PLC Setup, in the same way as for
the scheduled interrupt time.

MSKR(692) Operands (Only when Scheduled Interrupt Is Specified)

Operand Set value

N (Interrupt identi-
fier)

4: Scheduled interrupt 0, normal setting (internal timer not
reset)
5: Scheduled interrupt 1, normal setting (internal timer not
reset)

14: Scheduled interrupt 0, specifies reset start (CJ1M CPU
Units onlyC3

15: Scheduled interrupt 1, specifies reset start (CJ1M CPU
Units onlyC3

Operand Set value

N (Interrupt identifier) 4: Scheduled interrupt 0, reads scheduled interrupt time (set
value)
5: Scheduled interrupt 1, reads scheduled interrupt time (set
value)
14: Scheduled interrupt 0, reads internal timer PV (CJ1M
CPU Units onlyC3

15: Scheduled interrupt 1, reads internal timer PV (CJ1M
CPU Units onlyC3
285

Startup Settings and Maintenance Section 6-6
6-6 Startup Settings and Maintenance
This section describes the following functions related to startup and mainte-
nance.

• Hot Start/Hot Stop Functions

• Startup Mode Setting

• Power OFF Detection Delay Setting

• Disabling Power OFF Interrupts

• RUN Output

• Clock

• Program Protection

• Remote Programming and Monitoring

• Flash Memory

• Setting Startup Conditions

6-6-1 Hot Start/Hot Stop Functions
Operating Mode Change

Hot Start

Turn ON the IOM Hold Bit (A50012) to retain all data* in I/O memory when the
CPU Unit is switched from PROGRAM mode to RUN/MONITOR mode to start
program execution.

Hot Stop

When the IOM Hold Bit (A50012) is ON, all data* in I/O memory will also be
retained when the CPU Unit is switched from RUN/MONITOR mode to PRO-
GRAM mode to stop program execution.

Note *The following areas of I/O memory will be cleared during mode changes
(PROGRAM � RUN/MONITOR) unless the IOM Hold Bit is ON: the CIO Area
(I/O Area, Data Link Area, CPU Bus Unit Area, Special I/O Unit Area, Inner
Board Area, SYSMAC BUS Area, I/O Terminal Area, DeviceNet (CompoBus/
D) Area, and Internal I/O Areas), Work Area, Timer Completion Flags, and
Timer PVs. (The Inner Board, SYSMAC BUS, and I/O Terminal Areas are
supported by CS-series CPU Units only.)

Auxiliary Area Flags and Words

When the IOM Hold Bit is ON, all outputs from Output Units will be maintained
when program execution stops. When the program starts again, outputs will

PROGRAM

MONITOR or RUN

I/O memory

Retain CIO and
other areas

PROGRAM

MONITOR or RUN I/O memory

Retain CIO and
other areas

Name Address Description

IOM Hold Bit A50012 When this bit is ON, all of I/O memory will be retained
when the operating mode is changed (PROGRAM �
RUN/MONITOR).
286

Startup Settings and Maintenance Section 6-6
have the same status that they had before the program was stopped.
(When the IOM Hold Bit is OFF, instructions will be executed after the outputs
have been cleared.)

PLC Power ON In order for all data* in I/O memory to be retained when the PLC is turned on
(OFF � ON), the IOM Hold Bit must be ON and it must be protected in the
PLC Setup (address 80, IOM Hold Bit Status at Startup).

Auxiliary Area Flags and Words

PLC Setup

6-6-2 Startup Mode Setting
The CPU Unit’s initial operating mode (when the power is turned on) can be
set in the PLC Setup.

PLC Setup

Note If the Startup Mode is set to PRCN (Programming Console’s mode switch) but
a Programming Console isn’t connected, the CPU Unit will start in RUN
mode. Change the PLC Setup from the default value to start in MONITOR
mode or PROGRAM mode when the power is turned ON. (The CS-series
CS1 CPU Units, however, will start in PROGRAM mode under the same con-
ditions.)

Name Address Description

IOM Hold Bit A50012 When this bit is ON, all of I/O memory will be
retained when the operating mode is
changed (PROGRAM � RUN/MONITOR).

Program-
ming Con-

sole
address

Name Setting Default

80 bit 15 IOM Hold Bit Sta-
tus at Startup

0: The IOM Hold Bit is cleared to 0 when
power is turned on.

1: The IOM Hold Bit is retained when
power is turned on.

0
(Cleared)

Power ON

I/O memory
Retain

CIO and

other areas

Program-
ming

Console
address

Name Meaning Setting Default

81 Startup
Mode

Specifies
operating
mode to
use at
startup

PRCN: Programming Console’s
mode switch

PRG: PROGRAM mode
MON: MONITOR mode
RUN: RUN mode

PRCN: Pro-
gramming
Console’s
mode switch

Operating mode

Power ON
287

Startup Settings and Maintenance Section 6-6
6-6-3 RUN Output
Some of the Power Supply Units (the C200HW-PA204R, C200HW-PA209R,
and CJ1W-PA205R) are equipped with a RUN output. This output point is ON
(closed) when the CPU Unit is operating in RUN or MONITOR mode and OFF
(open) when the CPU Unit is in PROGRAM mode.

This RUN output can be used to create an external safety circuits, such as an
emergency stop circuit that prevents an Output Unit’s external power supply
from providing power unless the PLC is on.

Note When a Power Supply Unit without a RUN output is used, an equivalent out-
put can be created by programming the Always ON Flag (A1) as the execu-
tion condition for an output point from an Output Unit.

!Caution If Output Unit’s external power supply goes on before the PLC’s power supply,
the Output Unit may malfunction momentarily when the PLC first goes on. To
prevent any malfunction, add an external circuit that prevents the Output
Unit’s external power supply from going on before the power supply to the
PLC itself. Create a fail-safe circuit like the one described above to ensure
that power is supplied by an external power supply only when the PLC is
operating in RUN or MONITOR mode.

6-6-4 Power OFF Detection Delay Setting
Normally a power interruption will be detected about 10 to 25 ms (2 to 5 ms
for DC power supplies) after the power supply voltage drops below 85% of the
minimum rated value(80% for DC power supplies). There is a setting in the
PLC Setup (address 225 bits 0 to 7, Power OFF Detection Delay Time) that
can extend this time by up to 10 ms (up to 2 ms for DC power supplies).
When the power OFF interrupt task is enabled, it will be executed when the
power interruption is confirmed, otherwise the CPU will be reset and operation
will be stopped.

Related Settings

6-6-5 Disabling Power OFF Interrupts
This function is supported only by the CS1-H, CJ1-H, or CJ1M CPU Units.

With CS1-H, CJ1-H, or CJ1M CPU Units, areas of the program can be pro-
tected from power OFF interrupts so that they will be executed before the
CPU Unit even if the power supply is interrupted. This is achieved by using
the DISABLE
INTERRUPTS (DI(693)) and ENABLE INTERRUPTS (EI(694)) instructions.

Power Supply Unit

RUN output

Address Name Meaning Setting Default

CIO 256,
bits 00 to
07

Power
OFF
Detection
Delay

Set the time to
delay before
detecting a
power interrup-
tion.

00 to 0A (Hex): 0 to 10 ms 00 (Hex):
0 ms
288

Startup Settings and Maintenance Section 6-6
This function can be used with sets of instructions that must be executed as a
group, e.g., so that execution does not start with intermediate stored data the
next time power is turned ON.

Procedure

1,2,3... 1. Set the Disable Setting for Power OFF Interrupts in A530 to A5A5 Hex to
enable disabling Power OFF Interrupts.

2. Enable disabling Power OFF Interrupts in the PLC Setup (this is the default
setting).

3. Use DI(693) to disable interrupts before the program section to be protect-
ed and then use EI(694) to enable interrupts after the section. All instruc-
tions between DI(693) and EI(694) will be completed before the Power
OFF Interrupt is executed even if the power interruption occurs while exe-
cuting the instructions between DI(693) and EI(694).

Related Settings

6-6-6 Clock Functions
The CS/CJ-series PLCs have the following clock functions:

• Monitoring of the time that power interruptions occurred

• Monitoring of the time that the PLC was turned on

• Monitoring of the total time that the PLC has been on

Name Address Meaning

Disable Setting
for Power OFF
Interrupts

A530 Enables using DI(693) to disable power OFF inter-
rupt processing (except for execution of the Power
OFF Interrupt Task) until EI(694) is executed.

A5A5 Hex: Enables using DI(693) to disable power
OFF interrupt processing
Any other value: Disables using DI(693) to disable
power OFF interrupt processing

DI

EI

 D
I

E
I

▼

Execution condition

Power interrupted.

Instructions executed.

Power supply drops
below 85% of rated
value (80% for DC
power supplies).

CPU Unit reset
(forced end)

Interrupts enabled, causing
CPU Unit to be reset.

Interrupts disabled.

Power interruption
detected.

Instructions executed
through EI(694). Stop

10 ms - Power
OFF detection
delay (Power OFF
confirmation time)

Power OFF
detection time
+ Power OFF
detection
delay
289

Startup Settings and Maintenance Section 6-6
Note The CS-series CS1 CPU Units are shipped without the backup battery
installed, and the CPU Unit’s internal clock will be read 00/01/01 00:00:00 or
possibly another value when the battery is connected. To use the clock func-
tions, connect the battery, turn the power ON, and set the time and date with a
Programming Device (Programming Console or CX-Programmer) or the FINS
command (07 02, CLOCK WRITE). The CPU Unit’s internal clock will begin
operating once it has been set.

Auxiliary Area Flags and Words

Related Instructions

6-6-7 Program Protection
The CS/CJ-series user program can be write-protected and completely pro-
tected (read/write protection).

Write-protection Using the DIP Switch

The user program can be write-protected by turning ON pin 1 of the CPU
Unit’s DIP switch. When this pin is ON, it won’t be possible to change the user
program from a Programming Device (including Programming Consoles).
This function can prevent the program from being overwritten inadvertently at
the work site.

It is still possible to read and display the program when it is write-protected.

Name Addresses Function

Clock data A35100 to A35107 Second: 00 to 59 (BCD)

A35108 to A35115 Minute: 00 to 59 (BCD)

A35200 to A35207 Hour: 00 to 23 (BCD)

A35208 to A35215 Day of the month: 00 to 31 (BCD)

A35300 to A35307 Month: 00 to 12 (BCD)

A35308 to A35315 Year: 00 to 99 (BCD)

A35400 to A35407 Day of the week:
00: Sunday, 01: Monday,
02: Tuesday, 03: Wednesday,
04: Thursday, 05: Friday, 06: Saturday

Start-up Time A510 and A511 Contain the time at which the power
was turned on.

Power Interruption
Time

A512 and A513 Contain the time at which the power
was last interrupted.

Total Power ON Time A523 Contains the total time (in binary) that
the PLC has been on in 10-hour units.

Instruction Name Function

SEC(065) HOURS TO SEC-
ONDS

Converts time data in hours/minutes/seconds
format to an equivalent time in seconds only.

HMS(066) SECONDS TO
HOURS

Converts seconds data to an equivalent time in
hours/minutes/seconds format.

CADD(730) CALENDAR ADD Adds time to the calendar data in the specified
words.

CSUB(731) CALENDAR SUB-
TRACT

Subtracts time from the calendar data in the
specified words.

DATE(735) CLOCK ADJUST-
MENT

Changes the internal clock setting to the setting
in the specified source words.
290

Startup Settings and Maintenance Section 6-6
Read/write-protection Using Passwords

Both read and write access to the user program area can be blocked from the
CX-Programmer. Protecting the program will prevent unauthorized copying of
the program and loss of intellectual property. A password is set for program
protection from a Programming Device and access is prevented to the whole
program.

Note 1. If you forget the password, the program within the PLC cannot be trans-
ferred to the computer. Make a note of the password, and store it in a safe
place.

2. If you forget the password, programs cannot be transferred from the com-
puter to the PLC. Programs can be transferred from the computer to the
PLC even if the password protection has not been released.

Password Protection

1,2,3... 1. Register a password either online or offline as follows:

a) Select the PLC and select Properties from the View Menu.

b) Select Protection from the PLC Properties Dialog Box and input the
password.

2. Set password protection online as follows:

a) Select PLC, Password Protection, and then Set. The Program Pro-
tection Setting Dialog Box will be displayed.

b) Click the OK button.

Confirming the User Program Date
With a CS1-H, CJ1-H, or CJ1M CPU Unit, the dates the program and param-
eters were created can be confirmed by checking the contents of A090 to
A097.

Auxiliary Area Words
Name Address Description

User Program
Date

A090 to
A093

The time and date the user program was last over-
written in memory is given in BCD.

A09000 to A09007 Seconds (00 to 59 BCD)

A09008 to A09015 Minutes (00 to 59 BCD)

A09100 to A09107 Hour (00 to 23 BCD)

A09108 to A09115 Day of month (01 to 31 BCD)

A09200 to A09207 Month (01 to 12 BCD)

A09208 to A09215 Year (00 to 99 BCD)

A09300 to A09307 Day (00 to 06 BCD)
Day of the week:
00: Sunday, 01: Monday,
02: Tuesday, 03: Wednesday,
04: Thursday, 05: Friday,
06: Saturday

Parameter Date A094 to
A097

The time and date the parameters were last overwrit-
ten in memory is given in BCD. The format is the
same as that for the User Program Date given
above.
291

Startup Settings and Maintenance Section 6-6
6-6-8 Remote Programming and Monitoring
CS/CJ-series PLCs can be programmed and monitored remotely through a
modem or Controller Link network.

1,2,3... 1. Modem Connections

The host link function can operate through a modem, which allows moni-
toring of a distant PLC’s operation, data transfers, or even online editing of
a distant PLC’s program by phone. All of the Programming Device’s online
operations are supported in these connections.

2. Controller Link Network Connections

PLCs in a Controller Link or Ethernet network can be programmed and
monitored through the Host Link. All of the Programming Device’s online
operations are supported in these connections.

6-6-9 Unit Profiles
The following information can be read for CS/CJ-series Units from the CX-
Programer.

• Manufacturing information (lot number, serial number, etc.): Facilitates
providing information to OMRON when problems occur with Units.

• Unit information (type, model number, correct rack/slot position): Provides
an easy way to obtain mounting information.

• User-defined text (256 characters max.): Enables recording information
necessary for maintenance (Unit inspection history, manufacturing line
numbers, and other application information) in Memory Cards.

Modem Modem

Telephone
connection

Programming
Device

RS-232C

Host Link CPU Unit
RS-232C

Programming
Device

Host Link

CPU Unit

Controller Link Unit

CPU Unit

Controller Link Unit

(Functions as a
gateway.)RS-232C
292

Startup Settings and Maintenance Section 6-6
6-6-10 Flash Memory
This function is supported only by the CS1-H, CJ1-H, or CJ1M CPU Units.

With CS1-H, CJ1-H, or CJ1M CPU Units, the user program and parameters
are automatically backed up in flash memory whenever they are written to or
altered in the CPU Unit.

The following data is backed up automatically: User program, parameters
(including the PLC Setup, registered I/O tables, routing tables, and CPU Bus
Unit data, such as the data link tables).

The data is backed up automatically whenever the user program or parame-
ters are written in the CPU Unit, including for data transfer operations from the
CX-Programmer, writing data from a Programming Console, online editing,
data transfers from a Memory Card or EM file memory, etc.

The user program and parameter data written to flash memory is automati-
cally transferred to user memory in the CPU Unit at startup.

Note 1. The BKUP indicator on the front of the CPU Unit will light while data is be-
ing written to flash memory. Do not turn OFF the power supply to the CPU
Unit until the backup operation has been completed (i.e., until the BKUP
indicator goes out) after transferring data from the a Programming Device
or file memory, or performing online editing.

2. Only for online editing and only when there is a Battery in the CPU Unit,
the CPU Unit will restart in the previous condition (e.g., with the BKUP in-
dicator lit) even if the power supply is turned OFF before the backup oper-
ation has been completed, although up to 1 minute will be required will be
required to start the CPU Unit. Even in this case (and even if there is a Bat-
tery in the CPU Unit, always be sure that the backup operation has been
completed before turning OFF the power supply if the CPU Unit will be left
unpowered for an extended period of time.

CPU Unit

User memory

Automatic
backup

Flash memory

Automatically restored
when PLC is turned ON.

Parameters

User
program

Write operation

Data transfer from CX-
Programmer
Write from Programming
Console
Write from file memory
Online editing from CX-
Programmer
293

Startup Settings and Maintenance Section 6-6
The amount of time required to back up data (the time the BKUP indicator will
be lit) will depend on the size of the user program, as shown in the following
table.

Note 1. The BKUP indicator will be lit when power is supplied to the CPU Unit.

2. Depending on the type of online editing that was performed, up to 1 minute
may be required to backup data.

3. I/O memory (including the DM, EM, and HR Areas) is not written to flash
memory. The data in these areas is backed up by a Battery for recovery
after power interruptions. The data may not be correctly recovered if a bat-
tery error occurs, If the Battery Error Flag (A40204) is ON, take appropriate
steps in the ladder program to set the contents of these areas as required.

4. A backup status will be displayed in a Memory Backup Status Window by
the CX-Programmer when backing up data from the CX-Programmer for
transfer operations other than normal data transfers (PLC/Transfer). To
obtain this window, setting to display the backup status dialog box must be
checked in the PLC properties and the window must be selected from the
View Menu. For normal transfer operations, the backup status will be dis-
played in the transfer window after the transfer status for the program and
other data.

Auxiliary Area Flags

6-6-11 Startup Condition Settings
This function is supported only by the CS1-H, CJ1-H, or CJ1M CPU Units.

Some Units and Inner Boards require extensive time to start up after the
power supply is turned ON, affecting the startup time of the CPU Unit. The
PLC Setup can be set so that the CPU Unit will start without for these Units to
be initialized.

This setting applies to the ITNC-EIS01-CST and ITNC-EIX01-CST Open Net-
work Controller-CS1 Bus Interface Units. (There are currently no Inner Boards
that are applicable as of October 2001.)

User
program size

Backup processing time

MONITOR mode PROGRAM
modeCycle time of 0.4 ms

(example)
Cycle time of 10.0 ms

(example)

10 Ksteps 2 s 8 s 1 s

60 Ksteps 11 s 42 s 6 s

250 Ksteps 42 s 170 s 22 s

Name Address Meaning

Flash Memory
Error Flag

A40310 Turns ON when the flash memory fails.
294

Startup Settings and Maintenance Section 6-6
This function is controller by setting the Startup Condition and Inner Board
Setting described in the following table.

Note With CS1 CPU Units, the CPU Unit will not start until all Units and Boards
have completed startup processing.

PLC Setup

Startup Condition

0: If there is one or more of the specific Boards or Units that has not com-
pleted startup processing, the CPU Unit will go on standby in MONITOR or
PROGRAM mode and wait for all Units and Boards.

1: Even if there is one or more of the specific Boards or Units that has not
completed startup processing, the CPU Unit will go ahead and start in MONI-
TOR or PROGRAM mode. The operation for Inner boards, however, also
depends on the following setting.

Inner Board Setting

This setting is used only if the Startup Condition is set to 1 to enable starting
without waiting for specific Units and Boards. This setting is ignored if the
Startup Condition is set to 0.

0: If there is one or more of the specific Boards that has not completed startup
processing, the CPU Unit will go on standby in MONITOR or PROGRAM
mode and wait for all Boards.

1: Even if there is one or more of the specific Boards that has not completed
startup processing, the CPU Unit will go ahead and start in MONITOR or
PROGRAM mode.

Startup conditions PLC Setup

Startup Condition
(Programming Console

address 83, bit 15)

Inner Board Setting
(Programming Console

address 84, bit 15)

To start without wait-
ing for all Units and
Boards

1: Enable operation without
waiting.

1: Do not wait for specific
Inner Boards.

To start without wait-
ing for all Units (wait
for Boards)

1: Enable operation without
waiting.

0: Wait for all Boards before
starting.

To wait for all Units
and Boards before
starting

0: Always wait for all Units/
Boards

Any

Programming
Console
address

Name Setting Default CPU Unit
refresh
timing

Word Bit

83 15 Startup
Condition

0: Wait for Units and Boards.

1: Don’t wait.

0: Wait Power ON

84 15 Inner Board
Setting

0: Wait for all Boards.
1: Don’t wait for specific
Boards.

0: Wait Power ON
295

Diagnostic Functions Section 6-7
6-7 Diagnostic Functions
This section provides a brief overview of the following diagnostic and debug-
ging functions.

• Error Log

• Output OFF Function

• Failure Alarm Functions (FAL(006) and FALS(007))

• Failure Point Detection (FPD(269)) Function

6-7-1 Error Log
Each time that an error occurs in a CS/CJ-series PLC, the CPU Unit stores
error information in the Error Log Area. The error information includes the
error code (stored in A400), error contents, and time that the error occurred.
Up to 20 records can be stored in the Error Log.

In addition to system-generated errors, the PLC records user-defined
FAL(006) and FALS(007) errors, making it easier to track the operating status
of the system.

Refer to the section on troubleshooting in the CS/CJ Series Operation Manual
for details.

Note A user-defined error is generated when FAL(006) or FALS(007) is executed in
the program. The execution conditions of these instructions constitute the
user-defined error conditions. FAL(006) generates a non-fatal error and
FALS(007) generates a fatal error that stops program execution.

When more than 20 errors occur, the oldest error data (in A100 to A104) is
deleted, the remaining 19 records are shifted down by one record, and the
newest record is stored in A195 to A199.
296

Diagnostic Functions Section 6-7
The number of records is stored in binary in the Error Log Pointer (A300). The
pointer is not incremented when more than 20 errors have occurred.

6-7-2 Output OFF Function
As an emergency measure when an error occurs, all outputs from Output
Units can be turned OFF by turning ON the Output OFF Bit (A50015). The
operating mode will remain in RUN or MONITOR mode, but all outputs will be
turned OFF.

Note Normally (when IOM Hold Bit = OFF), all outputs from Output Units are turned
OFF when the operating mode is changed from RUN/MONITOR mode to
PROGRAM mode. The Output OFF Bit can be used to turn OFF all outputs
without switching to PROGRAM mode and stopping program execution.

Application Precaution for
DeviceNet

When the master function is used with the CS1W-DRM21 or CJ1W-DRM21,
all slave outputs will be turned OFF. When the slave function is used, all
inputs to the master will be OFF. When the C200HW-DRM21-V1 is used,
however, slave outputs will not be turned OFF.

6-7-3 Failure Alarm Functions
The FAL(006) and FALS(007) instructions generate user-defined errors.
FAL(006) generates a non-fatal error and FALS(007) generates a fatal error
that stops program execution.

When the user-defined error conditions (execution conditions for FAL(006) or
FAL(007)) are met, the Failure Alarm instruction will be executed and the fol-
lowing processing will be performed.

Error code Order of
occurrence

Error Log Area

Error code

Year, month

Time of
occurrence

Time of
occurrence

Time of
occurrence

Year, month

Error contents

Minute, second
Day, hour

Year, month
Error code

Error contents
Minute, second

Day, hour

Error code

Error contents

Minute, second
Day, hour

Error Log Pointer
297

Diagnostic Functions Section 6-7
1,2,3... 1. The FAL Error Flag (A40215) or FALS Error Flag (A40106) is turned ON.

2. The corresponding error code is written to A400.

3. The error code and time of occurrence are stored in the Error Log.

4. The error indicator on the front of the CPU Unit will flash or light.

5. If FAL(006) has been executed, the CPU Unit will continue operating.
If FALS(007) has been executed, the CPU Unit will stop operating. (Pro-
gram execution will stop.)

Operation of FAL(006)

When execution condition A goes ON, an error with FAL number 2 is gener-
ated, A40215 (FAL Error Flag) is turned ON, and A36002 (FAL Number 2
Flag) is turned ON. Program execution continues.

Errors generated by FAL(006) can be cleared by executing FAL(006) with FAL
number 00 or performing the error read/clear operation from a Programming
Device (including a Programming Console).

Operation of FALS(007)

When execution condition B goes ON, an error with FALS number 3 is gener-
ated, and A40106 (FALS Error Flag) is turned ON. Program execution is
stopped.

Errors generated by FAL(006) can be cleared by eliminating the cause of the
error and performing the error read/clear operation from a Programming
Device (including a Programming Console).

6-7-4 Failure Point Detection
FPD(269) performs time monitoring and logic diagnosis. The time monitoring
function generates a non-fatal error if the diagnostic output isn’t turned ON
within the specified monitoring time. The logic diagnosis function indicates
which input is preventing the diagnostic output from being turned ON.

Time Monitoring Function

FPD(269) starts timing when it is executed and turns ON the Carry Flag if the
diagnostic output isn’t turned ON within the specified monitoring time. The
Carry Flag can be programmed as the execution condition for an error pro-
cessing block. Also, FPD(269) can be programmed to generate a non-fatal
FAL error with the desired FAL number.

When an FAL error is generated, a preset message will be registered and can
be displayed on a Programming Device. FPD(269) can be set to output the
results of logic diagnosis (the address of the bit preventing the diagnostic out-
put from being turned ON) just before the message.

The teaching function can be used to automatically determine the actual time
required for the diagnostic output to go ON and set the monitoring time.

FAL 002 #0000

FALS 003 #0000
298

Diagnostic Functions Section 6-7
Logic Diagnosis Function

FPD(269) determines which input bit is causing the diagnostic output to
remain OFF and outputs that bit’s address. The output can be set to bit
address output (PLC memory address) or message output (ASCII).

• If bit address output is selected, the PLC memory address of the bit can
be transferred to an Index Register and the Index Register can be indi-
rectly addressed in later processing.

• If the message output is selected, the bit address will be registered in an
ASCII message that can be displayed on a Programming Device.

Time Monitoring:

Monitors whether output C goes ON with 10 seconds after input A. If C
doesn’t go ON within 10 seconds, a failure is detected and the Carry Flag
is turned ON. The Carry Flag executes the error-processing block. Also,
an FAL error (non-fatal error) with FAL number 004 is generated.

Logic Diagnosis:

FPD(269) determines which input bit in block B is preventing output C from
going ON. That bit address is output to D01000 and D01001.

Auxiliary Area Flags and Words

Error-processing block

Logic diagnosis
execution condition

B

C (Diagnostic output)

First register word
(Diagnostics output destination)

Monitor ing time (0.1-s units): 10 s
Control data
(FAL 004, bit address output)

Carr y Flag

FPD(269)
execution
condition

A

Name Address Operation

Error Code A400 When an error occurs, its error code is stored in
A400.

FAL Error Flag A40215 ON when FAL(006) is executed.

FALS Error Flag A40106 ON when FALS(007) is executed.

Executed FAL Num-
ber Flags

A360 to
A391

The corresponding flag is turned ON when an
FAL(006) or FALS(007) error occurs.

Error Log Area A100 to
A199

The Error Log Area contains information on the
most recent 20 errors.

Error Log Pointer A300 When an error occurs, the Error Log Pointer is
incremented by 1 to indicate where the next error
record will be recorded as an offset from the
beginning of the Error Log Area (A100).

Error Log Pointer
Reset Bit

A50014 Turn this bit ON to reset the Error Log Pointer
(A300) to 00.

FPD Teaching Bit A59800 Turn this bit ON when you want the monitoring
time to be set automatically when FPD(269) is
executed.
299

Diagnostic Functions Section 6-7
6-7-5 Simulating System Errors
This function is supported only by the CS1-H, CJ1-H, or CJ1M CPU Units.

FAL(006) and FALS(007) can be used to intentionally create fatal and non-
fatal system errors. This can be used in system debugging to test display
messages on Programmable Terminals (PTs) or other operator interfaces.

Use the following procedure.

1,2,3... 1. Set the FAL or FALS number to use for simulation in A529. (A529 is used
when simulating errors for FAL(006) and FALS(007).

2. Set the FAL or FALS number to use for simulation as the first operand of
FAL(006) or FALS(007).

3. Set the error code and error to be simulated as the second operation (two
words) of FAL(006) or FALS(007). Indicate a nonfatal error for FAL(006)
and a fatal error for FALS(007).

To simulate more than one system error, use more than one FAL(006) or
FALS(007) instruction as described above.

Auxiliary Area Flags and Words

Example for a Battery Error

Note Use the same methods as for actual system errors to clear the simulated sys-
tem errors. Refer to the CS-series Operation Manual or the CJ-series Opera-
tion Manual for details. All system errors simulated with FAL(006) and
FALS(007) can be cleared by cycling the power supply.

6-7-6 Disabling Error Log Storage of User-defined FAL Errors
This function is supported only by the CS1-H, CJ1-H, or CJ1M CPU Units.

The PLC Setup provides a setting that will prevent user-defined FAL errors
created with FAL(006) and time monitoring for FPD(269) from being recorded
in the error log (A100 to A199). The FAL error will still be generated even if
this setting is used and the following information will also be output: A40215
(FAL Error Flag), A360 to A391 (Executed FAL Numbers), and A400 (Error
Code.

Name Address Operation

FAL/FALS Number
for System Error
Simulation

A529 Set a dummy FAL/FALS number to use to simu-
late the system error.

0001 to 01FF Hex: FAL/FALS numbers 1 to 511
0000 or 0200 to FFFF Hex: No FAL/FALS number
for system error simulation.

MOV

&100

A529

a

MOV

#00F7

D00010

FAL

100

D00010

Execution condition

Set FAL number 100 in A529.

Set error code for battery error
(#00F7) in D00010.

Generate a battery error using FAL
number 100.
300

CPU Processing Modes Section 6-8
This function can be used when only system FAL errors need to be stored in
the error log, e.g., when there are many user-defined errors generated by the
program using FAL(006) and these fill up the error log too quickly.

PLC Setup

Note The following items will be stored in the error log even if the above setting is
used to prevent user-defined FAL errors from being recorded.

• User-defined fatal errors (FALS(007))

• Non-fatal system errors

• Fatal system errors

• User-simulated nonfatal system errors (FAL(006))

• User-simulated fatal system errors (FALS(007))

6-8 CPU Processing Modes

6-8-1 CPU Processing Modes
Normally, peripheral servicing (see note) is performed once at the end of each
cycle (following I/O refresh) either for 4% of the cycle or a user-set time for
each service. This makes it impossible to service peripheral devices at a rate
faster than the cycle time, and the cycle time is increased by the time required
for peripheral servicing.

With the CS1-H or CJ1-H CPU Units, however, Parallel Processing Modes
are supported that enable processing program execution in parallel with
peripheral servicing. These modes enable faster peripheral servicing and
shorter cycle times, especially when there is extensive peripheral servicing
required. (CJ1M CPU Units do not support the Parallel Processing Modes.)

Note Peripheral servicing includes non-schedule services required by external
devices, such as event servicing (e.g., communications for FINS commands)
for Special I/O Units, CPU Bus Units, and Inner Boards (CS Series only), as
well as communications port servicing for the peripheral and RS-232C ports
(but not including data links and other special I/O refreshing for CPU Bus
Units).

Programming
Console
address

Name Setting Default CPU Unit
refresh
timing

Word Bit

129 15 User FAL
Storage
Setting

0: Record user-defined FAL
errors in error log.

1: Don’t record user-defined
FAL errors in error log.

0:
Record

Whenever
FAL(006) is
executed
(every
cycle)
301

CPU Processing Modes Section 6-8
Normal Mode

Parallel Processing Modes

Parallel Processing Modes
There are two different Parallel Processing Modes: Parallel Processing with
Synchronous Memory Access and Parallel Processing with Asynchronous
Memory Access.

■ Parallel Processing with Asynchronous Memory Access

In this mode, I/O memory access for peripheral servicing is not synchronized
with I/O memory access for program execution. In other words, all peripheral
servicing is executed in parallel with program execution, including memory
access. This mode will provide the fastest execution (compared to the other
modes) for both program execution and event processing when there is a
heavy peripheral servicing load.

■ Parallel Processing with Synchronous Memory Access

In this mode, I/O memory access for peripheral servicing is not executed in
parallel with program execution, but rather is executed following program exe-
cution, just like it is in the normal execution mode, i.e., following the I/O
refresh period. All other peripheral servicing is executed in parallel with pro-
gram execution.

This mode will provide faster execution that the normal execution mode for
both program execution and event processing. The program execution cycle
time will be longer than that for Parallel Processing with Asynchronous Mem-
ory Access by the time required to refresh I/O for peripheral servicing.

The cycle times and peripheral servicing responses for Normal, Parallel Pro-
cessing with Asynchronous Memory Access, and Parallel Processing with
Synchronous Memory Access are listed in the following table. (These values

Overseeing processing

Program execution

I/O refreshing

Peripheral Servicing

Cycle time

Overseeing processing

Program execution

I/O refreshing

Peripheral servicing

Cycle time for
program execution

Overseeing processing
Cycle time for
peripheral servicing

Program Execution Cycle Peripheral Servicing Cycle
302

CPU Processing Modes Section 6-8
are for a program consisting of basic instructions with a cycle time of 10 ms
and with one Ethernet Unit. These values are provided for reference only and
will vary with the system.)

Note 1. Peripheral servicing includes event servicing (e.g., communications for
FINS commands) for Special I/O Units, CPU Bus Units, and Inner Boards
(CS Series only), as well as communications port servicing for the periph-
eral and RS-232C ports (but not including data links and other special I/O
refreshing for CPU Bus Units).

2. The CS1 CPU Units of version 1 or later and the CS1-H or CJ1-H CPU
Units also support a Peripheral Servicing Priority Mode that will perform
peripheral servicing at a fixed cycle during program execution. It will pro-
vide faster peripheral servicing than the normal processing mode, but pro-
gram execution will be slower. Event response, however, will not be as fast
as the Parallel Processing Modes. Parallel Processing with Asynchronous
Memory Access should thus be used whenever response to events is to
be given priority in processing.

3. Peripheral servicing cycle time over errors can occur in the CPU Unit when
parallel processing is used. If the peripheral servicing cycle time exceeds
2.0 s for a CS1-H or CJ1-H CPU Unit, this error will occur and A40515 will
turn ON and operation will stop (fatal error). The peripheral servicing cycle
time can be monitored in A268 to detect possible errors before they occur.
For example, a user-defined error can be generated using FAL number
100 if the peripheral servicing cycle time exceeds 1 s (i.e., if the contents
of A268 exceeds 2710 Hex (10000 decimal)).

The Programming Console should be disconnected when user applica-
tions are being run in a parallel processing mode. The Programming Con-
sole will be allocated servicing time to increase the response to
Programming Console keys, and this will increase the peripheral servicing
time and reduce the effectiveness of parallel processing.

Item Normal Mode Parallel Processing with
Asynchronous Memory

Access

Parallel Processing
with Synchronous
Memory Access

Cycle time Arbitrarily set to 1 0.9 0.9

Peripheral
servicing

Arbitrarily set to 1 0.4 1.0

FAL

1

#0000

>

A268

&10000

A user-defined error will be generated
with FAL number 100 by FAL(006) is the
peripheral servicing cycle time exceeds
1 s.
303

CPU Processing Modes Section 6-8
PLC Setup
The processing mode is specified in the PLC Setup.

Auxiliary Area Flags and Words

Parallel Processing with Asynchronous Memory Access
Program Executions

Programming
Console
address

Name Setting Default CPU Unit
refresh
timing

Word Bit

219 08 to
15

CPU Pro-
cessing
Mode

00 Hex: Normal Mode
01 Hex: Parallel Processing
with Synchronous Memory
Access
02 Hex: Parallel Processing
with Asynchronous Memory
Access
05 to FF Hex: Time slice pro-
gram execution time for
Peripheral Servicing Priority
Mode (5 to 255 ms in 1-ms
increments)
Settings of 03 and 04 Hex are
not defined (illegal) and will
cause PLC Setup errors (non-
fatal).

00 Hex:
Normal
Mode

Start of
operation

Name Address Operation

Peripheral Servicing
Cycle Time Over

A40515 Turns ON when the peripheral servicing cycle
time exceeds 2 s. Operation will be stopped.

Peripheral Servicing
Cycle Time

A268 Contains the peripheral servicing cycle time when
one of the Parallel Processing Modes (synchro-
nous or asynchronous memory access) is used
and the PLC is in RUN or MONITOR mode. The
time will be in binary between 0.0 and 2000.0 (in
0.1-ms increments).

Overseeing I/O bus check and other processing
0.3 ms

Instruction execution time Total execution time for all instructions

Minimum cycle time calculations Processing time for a minimum program execu-
tion cycle time

Cyclic ser-
vicing

I/O refresh I/O refresh time for each Unit x Number of Units

Special I/O refresh
for CPU Bus Units

Special I/O refresh time for each Unit x Number of
Units

Peripheral
servicing

File access Peripheral service time set in PLC Setup (default:
4% of cycle time)
304

CPU Processing Modes Section 6-8
Peripheral Servicing

Note Event servicing to access I/O memory includes 1) Servicing any received
FINS commands that access I/O memory (I/O memory read/write commands
with common codes beginning with 01 Hex or forced set/reset commands with
common codes beginning with 23 Hex) and 2) Servicing any received C-mode
commands that access I/O memory (excluding NT Links using the peripheral
or RS-232C port).

Parallel Processing with Synchronous Memory Access
Program Executions

Peripheral Servicing

Note Event servicing to access I/O memory includes 1) Servicing any received
FINS commands that access I/O memory (I/O memory read/write commands

Overseeing Battery check, user program
memory check, etc.

0.2 ms

Peripheral
servicing

Event servicing for Special I/O Units Includes event servicing to
access I/O memory (See note.)

Max. of 1 s for each service.
Event servicing for CPU Bus Units

Peripheral port servicing

RS-232C port servicing

Event servicing for Inner Boards (CS
Series only)

Event servicing for communications
ports (internal logic ports) that are
being used (including background
execution)

Overseeing I/O bus check and other processing

0.3 ms

Instruction execution time Total execution time for all instructions

Minimum cycle time calculations Processing time for a minimum program execu-
tion cycle time

Cyclic ser-
vicing

I/O refresh I/O refresh time for each Unit x Number of Units

Special I/O refresh
for CPU Bus Units

Special I/O refresh time for each Unit x Number of
Units

Peripheral
servicing

File access Peripheral service time set in PLC Setup (default:
4% of cycle time)Event servicing

requiring I/O mem-
ory access (See
note.)

Overseeing Battery check, user program
memory check, etc.

0.2 ms

Peripheral
servicing

Event servicing for Special I/O Units Except for event servicing to
access I/O memory (See note.)
Max. of 1 s for each service.

Event servicing for CPU Bus Units

Peripheral port servicing

RS-232C port servicing

Event servicing for Inner Boards (CS
Series only)

Event servicing for communications
ports (internal logic ports) that are
being used (including background
execution)
305

Peripheral Servicing Priority Mode Section 6-9
with common codes beginning with 01 Hex or forced set/reset commands with
common codes beginning with 23 Hex) and 2) Servicing any received C-mode
commands that access I/O memory (excluding NT Links using the peripheral
or RS-232C port).

6-8-2 Parallel Processing Mode and Minimum Cycle Times
If a minimum cycle time is specified when a parallel processing mode is being
used, a wait will be inserted after program execution until the minimum cycle
time has been reached, but peripheral servicing will continue.

6-8-3 Data Concurrency in Parallel Processing with Asynchronous
Memory Access

Data may not be concurrent in the following cases when using Parallel Pro-
cessing with Asynchronous Memory Access.

• When more than one word is read from I/O memory using a communica-
tions command, the data contained in the words may not be concurrent.

• If an instruction reads more than one word of I/O memory and peripheral
servicing is executed during execution of the instructions, the data con-
tained in the words may not be concurrent.

• If the same word in I/O memory is read by more than instruction at differ-
ent locations in the program and peripheral servicing is executed between
execution of the instructions, the data contained in the word may not be
concurrent.

The following steps can be used to ensure data concurrency when required.

1. Use Parallel Processing with Synchronous Memory Access

2. Use the IOSP(287) to disable peripheral servicing for where required in the
program and then use IORS(288) to enable peripheral servicing again.

6-9 Peripheral Servicing Priority Mode
Peripheral servicing for RS-232C port, the peripheral port, the Inner Board
(CS Series only), CPU Bus Units, and Special I/O Units is normally serviced
only once at the end of the cycle after the I/O refresh. Either 4% of the cycle
time or a user-set time is allocated to each service. A mode, however, is avail-
able that enables periodic servicing within a cycle. This mode, called the
Peripheral Servicing Priority Mode, is set in the PLC Setup.

Note The Peripheral Servicing Priority Mode can be used with CJ-series CPU Unit
or CS-series CPU Units, but the CS-series CS1 CPU Unit must have a lot
number 001201@@@@ or later (manufacture date of December 1, 2000 or
later).
306

Peripheral Servicing Priority Mode Section 6-9
6-9-1 Peripheral Servicing Priority Mode
If the Peripheral Servicing Priority Mode is set, program execution will be
interrupted at the specified time, the specified servicing will be performed, and
program execution will be resumed. This will be repeated through program
execution. Normal peripheral servicing will also be performed after the I/O
refresh period.

Peripheral Servicing Priority Mode can thus be used to execute periodic ser-
vicing for specified ports or Units along with the normal peripheral servicing.
This enables applications that require priority be given to peripheral servicing
over program execution, such as process control applications that require
rapid response for host monitoring.

• Up to five Units or ports can be specified for priority servicing. CPU Bus
Units and CS/CJ Special I/O Units are specified by unit number.

• Only one Unit or port is executed during each slice time for peripheral ser-
vicing. If servicing has been completed before the specified time expires,
program execution is resumed immediately and the next Unit or port is not
serviced until the next slice time for peripheral servicing. It is possible,
however, that the same Unit or port will be serviced more than once dur-
ing the same cycle.

• Unit or ports are serviced in the order in which they are detected by the
CPU Unit.

Note 1. Even though the following instructions use the communications ports, they
will be executed only once during the execution cycle even if Peripheral
Servicing Priority Mode is used:

RXD(235) (RECEIVE)
TXD(236) (TRANSMIT)

2. If more than one word is read via a communications command, the con-
currence of the read data cannot be guaranteed when Peripheral Servicing
Priority Mode is used.

3. The CPU Unit might exceed the maximum cycle time when Peripheral Ser-
vicing Priority Mode is used. The maximum cycle time is set in the PLC
Setup as the Watch Cycle Time setting. If the cycle time exceeds the
Watch Cycle Time setting, the Cycle Time Too Long Flag (A40108) will be
turned ON and PLC operation will be stopped. If the Peripheral Servicing
Priority Mode is used, the current cycle time in A264 and A265 should be
monitored and the Watch Cycle Time (address: +209) adjusted as re-
quired. (The setting range is 10 to 40,000 ms in 10-ms increments with a
default setting of 1 s.)

Peripheral
ser vicing

Normal per ipheral
ser vice

Peripheral
ser vicing Peripheral

ser vicing

Prog ram
execution Interrupted Prog ram

execution Interrupted
Prog ram
execution Interrupted

Prog ram
execution I/O refresh

T0: Time slice for program execution
T1: Time slice for per ipheral servicing

1 cycle
307

Peripheral Servicing Priority Mode Section 6-9
PLC Setup Settings The following settings must be made in the PLC Setup to use the Peripheral
Servicing Priority Mode.

• Slice Time for Program Execution: 5 to 255 ms in 1-ms increments

• Slice Time for Peripheral Servicing: 0.1 to 25.5 ms in 0.1-ms increments

• Units and/or Ports for Priority Servicing:CPU Bus Unit (by unit No.)
CS/CJ Special I/O Unit (by unit
No.)
Inner Board (CS Series only)
RS-232C port
Peripheral port

• Operation and errors will be as shown below depending on the settings in
the PLC Setup.

• The setting cannot be made from the CX-Programmer.

Note If an error is detected in the PLC Setup, A40210 will turn ON and a non-fatal
error will occur.

Address in Pro-
gramming Console

Settings Default Function New set-
ting’s effec-

tivenessWord Bit(s)

219 08 to
15

00
05 to FF
(Hex)

00 00: Disable priority mode servicing
05 to FF: Time slice for instruction execution

(5 to 255 ms in 1-ms increments)

Takes effect
at the start
of operation

(Can’t be
changed
during oper-
ation.)

00 to
07

00 to FF
(Hex)

00 00: Disable priority mode servicing

01 to FF: Time slice for peripheral servicing
(0.1 to 25.5 ms in 0.1-ms increments)

220 08 to
15

00
10 to 1F
20 to 2F
E1
FC
FD (Hex)

00 00: Disable priority mode servicing
10 to 1F: CPU Bus Unit unit number + 10 (Hex)
20 to 7F: CS/CJ Special I/O Unit unit number + 20 (Hex)

E1: Inner Board
FC: RS-232C port

FD: Peripheral port

00 to
07

00

221 08 to
15

00

00 to
07

00

222 08 to
15

00

Conditions CPU Unit operation PLC Setup errors

Time Slice for
Peripheral
Servicing

Time Slice for
Instruction
Execution

Specified Units
and Ports

01 to FF: (0.1 to
25.5 ms)

05 to FF: (5 to
255 ms)

All correct settings Peripheral Servicing Priority
Mode

None

00 and correct set-
tings

Correct, but
redundant settings

Some illegal set-
tings

Peripheral Servicing Priority
Mode for items with correct
settings

Generated

All 00 settings Normal operation Generated

00 and illegal set-
tings

All illegal settings

00 00 --- Normal operation None

Any other --- Normal operation Generated
308

Peripheral Servicing Priority Mode Section 6-9
Auxiliary Area Information If the slice times are set for program execution and peripheral servicing, the
total of all the program execution and peripheral servicing slice times will be
stored in A266 and A267. This information can be used as a reference in
making appropriate adjustments to the slice times.

When Peripheral Servicing Priority Mode is not being used, the program exe-
cution time will be stored. This value can be used in determining appropriate
settings for the slice times.

6-9-2 Temporarily Disabling Priority Mode Servicing
Data concurrence is not guaranteed at the following times if Peripheral Servic-
ing Priority Mode is used.

• When more than one word is read from a peripheral device using a com-
munications command. The data may be read during different peripheral
servicing time slices, causing the data to not be concurrent.

• When instructions with long execution times are used in the program,
e.g., when transferring large quantities of I/O memory data. The transfer
operation may be interrupted for peripheral servicing, causing the data to
not be concurrent. This can be true when words being written by the pro-
gram are read from a peripheral before the write has been completed or
when words being read by the program are written from a peripheral
before the read has been completed.

• When two instructions access the same words in memory. If these words
are written from a peripheral device between the times the two instruc-
tions are executed, the two instructions will read different values from
memory.

When data concurrence must be ensured, the DISABLE INTERRUPTS and
ENABLE INTERRUPTS instructions (DI(693) and EI(694)) can be used for
CS1 or CJ1 CPU Units to prevent priority servicing during required sections of
the program, as shown in the following example. For CS1-H, CJ1-H, or CJ1M
CPU Units, the DISABLE PERIPHERAL SERVICING and ENABLE PERIPH-
ERAL SERVICING instructions (IOSP(287) and IORS(288)) can be used

Words Contents Meaning Refreshing

A266 and A267 00000000 to
FFFFFFFF Hex
(0 to 4294967295
decimal)

The contents is
refreshed each cycle
and is cleared at the
beginning of opera-
tion.

Total of all slice times for program execution and
all slice times for peripheral servicing.

0.0 to 429,496,729.5 ms (0.1-ms increments)

Value is stored
as 32-bit binary
(8-digit hexadeci-
mal) value

A267
(Most-signifi-
cant bytes)

A266
(Least-signifi-
cant bytes)

Priority servicing will not be executed between DI(693) and
EI(694) while W000000 is ON.
309

Peripheral Servicing Priority Mode Section 6-9
Operation

Note 1. DI(693) and IOSP(287) will disable not only interrupts for priority servicing,
but also all other interrupts, including I/O, scheduled, and external inter-
rupts. All interrupts that have been generated will be executed after the cy-
clic task has been executed (after END(001) execution) unless CLI(691) is
executed first to clear the interrupts.

2. Disabling interrupts with DI(693) or IOSP(287) is effective until EI(694) or
IORS(288) is executed, until END(001) is executed, or until PLC operation
is stopped. Program sections can thus not be created that go past the end
of a task or cycle. Use DI(693) and EI(694) or IOSP(287) and IORS(288)
in each cyclic task when necessary to disable interrupts in more than one
cycle or task.

CS1 and CJ1 CPU Units
DI(693) When executed, DI(693) disables all interrupts (except for interrupts for the

power interrupt task), including interrupts for priority servicing, I/O interrupts,
scheduled interrupts, and external interrupts. Interrupts will remain disabled if
DI(693) is executed when they are already disabled.

Symbol

Applicable Program Areas

Condition Flags

EI(694) When executed, EI(694) enables all interrupts (except for interrupts for the
power interrupt task), including interrupts for priority servicing, I/O interrupts,
scheduled interrupts, and external interrupts. Interrupts will remain enabled if
EI(694) is executed when they are already enabled.

Symbol

Time slice for
program execution

Time slice for
program execution

Time slice for
peripheral servicing

InterruptedExecution InterruptedExecution Execution

I/O refresh

Normal peripheral
servicing

Peripheral
servicing

Peripheral
servicing

Program section
requiring data
concurrence

DI(693) executed. EI(694) executed.

Area Applicability

Block programming areas Yes

Step programming areas Yes

Subroutine programs Yes

Interrupt tasks No

Flag Label Operation

Error Flag ER Turns ON if DI(693) is executed in an interrupt task, and
OFF otherwise

(@)DI(693)

EI(694) EI(694) requires no execution condition.
310

Peripheral Servicing Priority Mode Section 6-9
Applicable Program Areas

Condition Flags

CS1-H, CJ1-H, and CJ1M CPU Units
IOSP(287) When executed, IOSP(287) disables peripheral servicing. Peripheral servic-

ing will remain disabled if IOSP(287) is executed when it is already disabled.

Symbol

Applicable Program Areas

Condition Flags

IORS(288) When executed, IORS(288) enables disables peripheral servicing that was
disabled with IOSP(287). Peripheral servicing will remain enabled if
IORS(288) is executed when it is already enabled.

Symbol

Applicable Program Areas

Condition Flags

Area Applicability

Block programming areas Yes

Step programming areas Yes

Subroutine programs Yes

Interrupt tasks No

Flag Label Operation

Error Flag ER Turns ON if EI(694) is executed in an interrupt task.

Area Applicability

Block programming areas Yes

Step programming areas Yes

Subroutine programs Yes

Interrupt tasks No

Flag Label Operation

Error Flag ER Turns ON if IOSP(287) is executed in an interrupt task,
and OFF otherwise

IOSP

Area Applicability

Block programming areas Yes

Step programming areas Yes

Subroutine programs Yes

Interrupt tasks No

Flag Label Operation

Error Flag ER Turns ON if IORS(288) is executed in an interrupt task.

IORS
311

Battery-free Operation Section 6-10
6-10 Battery-free Operation
The CS-series and CJ-series PLCs can be operated without a Battery
installed (or with an exhausted Battery). The procedure used for battery-free
operation depends on the following items.

• CPU Unit

• Whether or not I/O memory (e.g., CIO Area) is maintained or not

• Whether or not the DM and EM Areas are initialized at startup

• Whether or not the DM and EM Areas are initialized from the user pro-
gram

The above differences are summarized in the following table.

Note 1. When using battery-free operation, disable detecting a low battery voltage
in the PLC Setup regardless of the method used for battery-free operation.

2. If a Battery is not connected or the Battery is exhausted, the following re-
strictions will apply to CPU Unit operation. This is true regardless of the
CPU Unit being used.

• The contents of I/O memory (including the HR, DM, and EM Areas)
may not be correctly maintained. Therefore, set the PLC Setup so that
the status of the I/O Memory Hold Flag (A50012) and the Forced Sta-
tus Hold Flag (A50013) are not maintained when power is turned ON.

• The clock function cannot be used. The clock data in A351 to A354
and the startup time in A510 and A511 will not be dependable. The
files dates on files written to the Memory Card from the CPU Unit will
also not be dependable.

• The following data will be all-zeros at startup: Power ON Time (A523),
Power Interruption Time (A512 and A513), and Number of Power In-
terruptions (A514).

• The Error Log Area in A100 to A199 will not be maintained.

• The current EM bank will always be 0 at startup.

• There will be no files left in the EM file memory at startup and the file
memory functions cannot be used. The EM file memory must be reset
in the PLC Setup and the EM file memory must be reformatted to use
it.

CS1-H, CJ1-H, or CJ1M CPU Units
Battery-free operation is possible for CS1-H, CJ1-H, or CJ1M CPU Units with
normal operation. The user program and parameter data are automatically
backed up to flash memory in the CPU Unit and are automatically restored
from flash memory at startup. In this case, the I/O memory will not be main-
tained and the DM and EM Areas must be initialized from the user program.

Battery-free operation is also possible for the CS1-H, CJ1-H, or CJ1M CPU
Units by automatically transferring data from a Memory Card at startup, just

CPU Unit Not maintaining I/O memory Maintaining I/O memory

No initializing DM and
EM Areas at startup

Initializing DM and EM Areas at startup

From user program Not from user program

CS1-H,
CJ1-H, or
CJ1M

Use normal operation (using flash memory) or a
Memory Card.

Use automatic transfer
from a Memory Card at
startup. (Turn ON pin 2
of DIP switch.)

Not possible with any method.
A Battery must be installed.

CS1 or CJ1 Use automatic transfer from a Memory Card at
startup. (Turn ON pin 2 of DIP switch.)
312

Battery-free Operation Section 6-10
as it is for the CS1 CPU Units. (With a Memory Card, the DM and EM Area
data can be included.)

CJ1 and CJ1 CPU Units
Battery-free operation is possible for the CS1 and CJ1 CPU Units by automat-
ically transferring data from a Memory Card at startup. In this case, the I/O
memory will not be maintained. (With a Memory Card, the DM and EM Area
data can be included.)

Procedure
The following flowcharts show the procedures for the two types of CPU Unit.

CS1-H, CJ1-H, or CJ1M CPU Units

CIO/WR/TIM
CNT/HR/DM/EM

CNT/HR/DM/EM

Operation with a Battery

Required data?

Maintain
previous I/O

data at
startup?

Use normal operation. No
Memory Card is required.
PLC Setup: Disable detection a
low battery voltage and set I/O
Memory Hold Bit status to be
maintained at when power is
turned ON.

Battery-free Operation

Initialize I/O
memory before

program
execution?

Initialize I/O
memory from the

program?

Initialize only DM
Area words allocated

to CPU Bus Units
and Inner Boards

(D20000 to
D32767)?

Initialize all of the DM and EM Areas
starting from D00000.

Use normal operation. No Memory
Card is required. User program and
parameter data backed up in flash
memory.
PLC Setup: Disable detection a low
battery voltage.

Automatically transfer data from a
Memory Card at startup.
Required files: AUTOEXEC.OBJ,
AUTOEXEC.STD, and
AUTOEXEC.IOM
PLC Setup: Disable detection a low
battery voltage.

Automatically transfer data from a
Memory Card at startup.
Required files: AUTOEXEC.OBJ,
AUTOEXEC.STD,
AUTOEXEC.IOM, etc.
PLC Setup: Disable detection a low
battery voltage.

Power ON

Yes

No

No

No

No

Other. Battery-free operation not necessary.

Yes

Use normal operation. No
Memory Card is required.
PLC Setup: Enable detection a
low battery voltage.

Yes, initialize I/O memory
from the program.
313

Other Functions Section 6-11
CS1 and CJ1 CPU Units

6-11 Other Functions

6-11-1 I/O Response Time Settings
The input response times for CS/CJ Basic I/O Units can be set by Rack and
Slot number. Increasing the input response time reduces the effects of chat-
tering and noise. Decreasing the input response time (but keeping the pulse
width longer than the cycle time) allows reception of shorter input pulses.

Note With CS-series CPU Units, pulses shorter than the cycle time can be input
with the high-speed inputs available in some C200H High-density I/O Units or
with a High-speed Input Unit. Refer to !�!��5�)#!���������	�� for details.

CIO/WR/TIM
CNT/HR/DM/EM

CNT/HR/DM/EM

Operation with a Battery

Required data?
Maintain previous

I/O data at
startup?

Use normal operation. No
Memory Card is required.
PLC Setup: Disable detection a
low battery voltage and set I/O
Memory Hold Bit status to be
maintained at when power is
turned ON.

Battery-free Operation

Initialize only DM Area
words allocated to CPU

Bus Units and Inner
Boards (D20000 to

D32767)?

Initialize all of the DM and EM Areas
starting from D00000.

Automatically transfer data from a
Memory Card at startup.
Required files: AUTOEXEC.OBJ,
AUTOEXEC.STD, and
AUTOEXEC.IOM
PLC Setup: Disable detection a low
battery voltage.

Automatically transfer data from a
Memory Card at startup.
Required files: AUTOEXEC.OBJ,
AUTOEXEC.STD,
AUTOEXEC.IOM, etc.
PLC Setup: Disable detection a low
battery voltage.

Power ON

No

No

Other. Battery-free operation not necessary.

Yes

Use normal operation. No
Memory Card is required.
PLC Setup: Enable detection a
low battery voltage.

CS1 Basic
I/O Unit

Pulses shorter than the input
response time are not received.

CPU Unit

Input response time

I/O refreshing

Input response time

I/O refreshing

CS1 Basic
I/O Unit

CPU Unit
314

Other Functions Section 6-11
PLC Setup

The input response times for the 80 slots in a CS/CJ PLC (Rack 0 Slot 0
through Rack 7 slot 9) can be set in the 80 bytes in addresses 10 through 49.

6-11-2 I/O Area Allocation
A Programming Device can be used to set the first word for I/O allocation in
Expansion Racks (CS/CJ Expansion Racks and C200H Expansion I/O
Racks). This function allows each Rack’s I/O allocation area to be fixed within
the range CIO 0000 to CIO 0999. (The first words are allocated by rack num-
ber.)

Programming
Console
address

Name Setting (Hex) Default (Hex)

10
Bits 0 to 7

CS/CJ Basic I/O Unit
Input Response Time for
Rack 0, Slot 0

00: 8 ms
10: 0 ms
11: 0.5 ms
12: 1 ms
13: 2 ms
14: 4 ms
15: 8 ms
16: 16 ms
17: 32 ms

00 (8 ms)

: : : :

49
Bits 8 to 15

CS/CJ Basic I/O Unit
Input Response Time for
Rack 7, Slot 9

Same as above. 00 (8 ms)
315

Other Functions Section 6-11
316

SECTION 7
Program Transfer, Trial Operation, and Debugging

This section describes the processes used to transfer the program to the CPU Unit and the functions that can be used to test
and debug the program.

7-1 Program Transfer. 318

7-2 Trial Operation and Debugging. 318

7-2-1 Forced Set/Reset . 318

7-2-2 Differential Monitoring. 319

7-2-3 Online Editing. 320

7-2-4 Tracing Data . 323
317

Program Transfer Section 7-1
7-1 Program Transfer
A Programming Device is used to transfer the programs, PLC Setup, I/O
memory data, and I/O comments to the CPU Unit with the CPU Unit in PRO-
GRAM mode.

Program Transfer Procedure for CX-Programmer

1,2,3... 1. Select PLC, Transfer, and then To PLC. The Download Options Dialog
Box will be displayed.

2. Specify the items for the transfer from among the following: Programs, Set-
tings (PLC Setup), I/O table, Symbols, Comments, and Program index.

Note The I/O table and Comments can be selected only if they exist on the
Memory Card in the CPU Unit.

3. Click the OK button.

The program can be transferred using either of the following methods.

• Automatic transfer when the power is turned ON

When the power is turned ON, the AUTOEXEC.OBJ file in the Memory Card
will be read to the CPU Unit (pin 2 on the DIP switch must be ON).

• Program replacement during operation

The existing program file can be replaced with the program file specified in the
Auxiliary Area by turning ON the Replacement Start Bit in the Auxiliary Area
(A65015) from the program while the CPU Unit is in operation. Refer to ���!
�����,�"�
��$�%����"	�'����� for details.

7-2 Trial Operation and Debugging

7-2-1 Forced Set/Reset
A Programming Device can force-set (ON) or reset (OFF) specified bits (CIO
Area, Auxiliary Area, HR Area, and timer/counter Completion Flags). Forced
status will take priority over status output from the program or I/O refreshing.
This status cannot be overwritten by instructions, and will be stored regard-
less of the status of the program or external inputs until it is cleared from a
Programming Device.

Force-set/reset operations are used to force input and output during a trial
operation or to force certain conditions during debugging.

Force-set/reset operations can be executed in either MONITOR or PRO-
GRAM modes, but not in RUN mode.

Note Turn ON the Forced Status Hold Bit (A50013) and the IOM Hold Bit (A50012)
at the same time to retain the status of bits that have been force-set or reset
when switching the operating mode.

Turn ON the Forced Status Hold Bit (A50013) and the IOM Hold Bit (A50012),
and set the Forced Status Hold Bit at Startup setting PLC Setup to retain the
status of the Forced Status Hold Bit hold to retain the status of bits that have
been force-set or reset when turning OFF the power.
318

Trial Operation and Debugging Section 7-2
The following areas can be force-set and reset.

CIO (I/O bits, data link bits, CPU Bus Unit bits, Special I/O Unit bits, Inner
Board bits, SYSMAC BUS bits, Optical I/O Unit bits, work bits), WR Area,
Timer Completion Flags, HR Area, Counter Completion Flags. (The Inner
Board, SYSMAC BUS, and I/O Terminal Areas are supported by the CS-
series CPU Units only.)

Programming Device Operation
• Select bits for forced setting/resetting.

• Select forced set or forced reset.

• Clear forced status (including clearing all forced status at the same time).

7-2-2 Differential Monitoring
When the CPU Unit detects that a bit set by a Programming Device has
changed from OFF to ON or from ON to OFF, the results are indicated in the a
Differentiate Monitor Completed Flag (A50809). The Flag will turn ON when
conditions set for the differential monitor have been met. A Programming
Device can monitor and display these results on screen.

Programming Device Operation for CX-Programmer

1,2,3... 1. Right-click the bit for differential monitoring.

2. Click Differential Monitor from the PLC Menu. The Differential Monitor Di-
alog Box will be displayed.

3. Click Rising or Falling.

4. Click the Start button. The buzzer will sound when the specified change is
detected and the count will be incremented.

5. Click the Stop button. Differential monitoring will stop.

Forced ON regardless
of programming

Input ignored

Output Unit CPU Unit

Forced
set

Forced
set

P
ro

gr
am

CPU Unit

I/O memory

Bit A
Moni-
tored
for OFF
to ON
transi-
tion.

Programming Device
Detects bit A
OFF to ON
transition.
319

Trial Operation and Debugging Section 7-2
Related Auxiliary Bits/Words

7-2-3 Online Editing
The Online Editing function is used to add to or change part of a program in a
CPU Unit directly from the Programming Devices when the CPU Unit is in
MONITOR or PROGRAM mode. Additions or changes are made one instruc-
tion at a time for the Programming Console and one or more program sections
at a time from the CX-Programmer. The function is thus designed for minor
program changes without stopping the CPU Unit.

Online editing is possible simultaneously from more than one computer run-
ning the CX-Programmer as well as from a Programming Console as long as
different tasks are edited.

The cycle time will be increased by from one to several cycle times if the pro-
gram in the CPU Unit is edited online in MONITOR mode.

The cycle time for CS1-H, CJ1-H, and CJ1M CPU Units will also be increased
to back up data in the flash memory after online editing. The BKUP indicator
will be lit during this period. The progress of the backup is displayed on the
CX-Programmer. The increases per cycle are listed in the following table.

With a CS1-H, CJ1-H, or CJ1M CPU Unit, there is a limit to the number of
edits that can be made consecutively. The actual number depends on the type
of editing that is performed, but the following can be used as guidelines.

CJ1M-CPU@@: 40 edits
CS1G-CPU@@H/CJ1G-CPU@@H: 160 edits
CS1H-CPU@@H/CJ1H-CPU@@H: 400 edits

Name Address Description

Differentiate Monitor
Completed Flag

A50809 Turns ON when the differential monitoring condition has been met dur-
ing differential monitoring.

Note: The flag will be cleared when differential monitoring is started.

CPU Unit Increase in cycle time

Online editing Backup to flash memory

CS1 CPU Units pre-EV1 90 ms max. Not supported.

CS1 CPU Units EV1 or later 12 ms max.

CS1-H CPU Units 4% or cycle time

CS1 CPU Units Not supported.

CJ1-H CPU Units 4% or cycle time

CJ1M CPU Units

Programming Device

Operating in
MONITOR mode.

Program section changed

Online Editing
320

Trial Operation and Debugging Section 7-2
A message will be displayed on the CX-Programmer or Programming Console
if the limit is exceeded, and further editing will not be possible until the CPU
Unit has completed backing up the data.

Task Size and Cycle Time
Extension

The relation to the size of the task being edited to cycle time extension is as
follows:

When using a version 1 or later CS1 CPU Unit, CS1-H CPU Unit, CJ1 CPU
Unit, or CJ1M CPU Unit, the length of time that the cycle time is extended due
to online editing is almost unaffected by the size of the task (program) being
edited.

When using a pre-EV1 CS1 CPU Unit, the size of the task that is being edited
will determine the length of time that a program will be stopped for online edit-
ing. By splitting the program into smaller tasks, the amount of time that the
cycle is extended will be shorter using the Online Editing function than with
previous PLC models.

Precautions The cycle time will be longer than normal when a program is overwritten using
Online Editing in MONITOR mode, so make sure that the amount of time that
it is extended will not exceed the cycle monitoring time set in the PLC Setup. If
it does exceed the monitoring time, then a Cycle Time Over error will occur,
and the CPU Unit will stop. Restart the CPU Unit by selecting PROGRAM
mode first before changing to RUN or MONITOR mode.

Note If the task being edited online contains a block program, then previous exe-
cute data such as Standby (WAIT) or Pause status will be cleared by online
editing, and the next execution will be from the beginning.

Online Editing from CX-Programmer

1,2,3... 1. Display the program section that will be edited.

2. Select the instructions to be edited.

3. Select Program, Online Edit, and then Begin.

4. Edit the instructions.

5. Select Program, Online Edit, and then Send Changes The instructions
will be check and, if there are no errors, they will be transferred to the CPU
Unit. The instructions in the CPU Unit will be overwritten and cycle time will
be increased at this time.

!Caution Proceed with Online Editing only after verifying that the extended cycle time
will not affect operation. Input signals may not be input if the cycle time is too
long.

Temporarily Disabling Online Editing

It is possible to disable online editing for a cycle to ensure response charac-
teristics for machine control in that cycle. Online editing from the Program-
ming Device will be disabled for one cycle and any requests for online editing
received during that cycle will be held until the next cycle.

Online editing is disabled by turning ON the Online Editing Disable Bit
(A52709) and setting the Online Editing Disable Bit Validator (A52700 to
A52707) to 5A. When these settings have been made and a request for online
editing is received, online editing will be put on standby and the Online Editing
Wait Flag (A20110) will be turned ON.

When the Online Editing Disable Bit (A52709) is turned OFF, online editing
will be performed, the Online Editing Processing Flag (A20111) will turn ON,
and the Online Editing Wait Flag (A20110) will turn OFF. When online editing
321

Trial Operation and Debugging Section 7-2
has been completed, the Online Editing Processing Flag (A20111) will turn
OFF.

Online editing can also be temporarily disabled by turning ON the Online Edit-
ing Disable Bit (A52709) while online editing is being performed. Here too, the
Online Editing Wait Flag (A20110) will turn ON.

If a second request for online editing is received while the first request is on
standby, the second request will not be recorded and an error will occur.

Online editing can also be disabled to prevent accidental online editing. As
described above, disable online editing by turning ON the Online Editing Dis-
able Bit (A52709) and setting the Online Editing Disable Bit Validator (A52700
to A52707) to 5A.

Enabling Online Editing from a Programming Device

When online editing cannot be enabled from the program, it can be enabled
from the CX-Programmer.

1,2,3... 1. Performing Online Editing with a Programming Console

If online editing is executed from a Programming Console and the online
editing standby status cannot be cleared, the Programming Console will be
locked out and Programming Console operations will not be possible.

In this case, connect the CX-Programmer to another serial port and turn
OFF the Online Edit Disable Bit (A52709). The online editing will be pro-
cessed and Programming Console operations will be possible again.

2. Performing Online Editing with the CX-Programmer

If operations continue with online editing in standby status, CX-Program-
mer may go offline. If this occurs, reconnect the computer to the PLC and
turn OFF the Online Edit Disable Bit (A52709).

Related Auxiliary Bits/Words

Turning OFF Outputs
If the Output OFF Bit (A50015) is turned ON through the OUT instruction or
from a Programming Device, all outputs from all Output Units will be turned
OFF (this applies to the built-in general-purpose or pulse outputs on CJ1M
CPU Units as well), and the INH indicator on the front of the CPU Unit will turn
ON.

The status of the Output OFF Bit is maintained even if power is turned OFF
and ON.

Name Address Description

Online Edit Disable Bit Validator A52700 to
A52707

Validates the Online Edit Disable Bit (A52709).

Not 5A: Online Edit Disable Bit invalid
5A: Online Edit Disable Bit valid

Online Edit Disable Bit A52709 To disable online editing, turn this bit ON and set the Online Edit Disable
Bit Validator (A52700 to A52707) to 5A.

Online Editing Wait Flag A20110 ON when an online editing process is on standby because online editing
is disabled.

Online Editing Processing Flag A20111 ON when an online editing process is being executed.
322

Trial Operation and Debugging Section 7-2
7-2-4 Tracing Data
The Data Trace function samples specified I/O memory data using any one of
the following timing methods, and it stores the sampled data in Trace Memory,
where they can be read and checked later from a Programming Device.

• Specified sampling time (10 to 2,550 ms in 10-ms units)

• One sample per cycle

• When the TRACE MEMORY SAMPLING instruction (TRSM) is executed

Up to 31 bits and 6 words in I/O memory can be specified for sampling. Trace
Memory capacity is 4,000 words.

Basic Procedure

1,2,3... 1. Sampling will start when the parameters have been set from the CX-Pro-
grammer and the command to start tracing has been executed.

2. Sampled data (after step 1 above) will be traced when the trace trigger
condition is met, and the data just after the delay (see note 1) will be stored
in Trace Memory.

3. Trace Memory data will be sampled, and the trace ended.

Note Delay value: Specifies how many sampling periods to offset the sampling in
Trace Memory from when the Trace Start Bit (A50814) turns ON. The setting
ranges are shown in the following table.

Positive delay: Store data delayed by the set delay.

Negative delay: Store previous data according go to the set delay.

Example: Sampling at 10 ms with a –30 ms delay time yields –30 x 10 = 300
ms, so data 300 ms before the trigger will be stored.

Note Use a Programming Device to turn ON the Sampling Start Bit (A50815).Never
turn ON this bit from the user program.

All OFF

Output Unit CPU Unit

Output OFF Bit: ON

No. of words
sampled

Setting range

0 –1999 to 2000

1 –1332 to 1333

2 –999 to 1000

3 –799 to 800

4 –665 to 666

5 –570 to 571

6 –499 to 500
323

Trial Operation and Debugging Section 7-2
The following traces can be executed.

Scheduled Data Trace A scheduled data trace will sample data at fixed intervals. Specified sampling
times are 10 to 2,550 ms in 10-ms units. Do not use the TRSM instruction in
the user program and be sure to set the sampling period higher than 0.

One-cycle Data Trace A one-cycle data trace will sample I/O refresh data after the end of the tasks
in the full cycle. Do not use the TRSM instruction in the user program and be
sure to set the sampling period higher than 0.

Data Trace via TRSM A sample will be taken once when the TRACE MEMORY SAMPLING instruc-
tion (TRSM) instruction is executed. When more than one TRSM instruction is
used in the program, a sample will be taken each time the TRSM instruction is
executed after the trace trigger condition has been met.

Data Trace Procedure
Use the following procedure to execute a trace.

1,2,3... 1. Use the CX-Programmer to set trace parameters: Address of the sampled
data, sampling period, delay time, and trigger conditions.

2. Use CX-Programmer to start sampling or turn ON the Sampling Start Bit
(A50815).

3. Put the trace trigger condition into effect.

4. End tracing.

5. Use CX-Programmer to read the trace data.

a) Select Data Trace from the PLC Menu.

b) Select Select from the Execution Menu.

c) Select Execute from the Execution Menu.

d) Select Read from the Execution Menu.

Related Auxiliary Bits/Words

Sampling Start Bit

Trace Start Bit

Trace Trigger Monitor Flag

Trace Busy Flag

Trace Completed Flag

Sampling

Name Address Description

Sampling Start Bit A50815 Use a Programming Device to turn ON this bit to start sampling. This bit
must be turned ON from a Programming Device.
Do not turn this bit ON and OFF from the user program.

Note: The bit will be cleared when the Data Trace has been completed.

Trace Start Bit A50814 When this bit is turned ON, the trace trigger will be monitored and sam-
pled data will be stored in Trace Memory when the trigger condition is
met. The following traces are enabled with this bit.
1) Scheduled trace (trace at fixed intervals of 10 to 2,550 ms)

2) TRSM instruction trace (trace when the TRSM executes)
3) One-cycle trace (trace at the end of execution of all cyclic tasks)
324

Trial Operation and Debugging Section 7-2
Trace Trigger Monitor
Flag

A50811 This flag turns ON when the trace trigger condition has been met after
the Trace Start Bit has turned ON. This flag will turn OFF when the
sampling is started again by turning ON the Sampling Start Bit.

Trace Busy Flag A50813 This flag turns ON when sampling is started by a Sampling Start Bit
and turns OFF when the trace has been completed.

Trace Completed Flag A50812 This flag turns ON if Trace Memory becomes full after the trace trigger
condition has been met during a trace operation and turns OFF when
the next sampling operation is started.

Name Address Description
325

Appendix A
PLC Comparison Charts:

CJ-series, CS-series, C200HG/HE/HX,

CQM1H, CVM1, and CV-series PLCs

Functional Comparison
Item CJ Series CS Series C200HX/HG/

HE
CVM1/CV

Series
CQM1H

Basic features Ca-
pacity

No. of I/O
points

2,560 points 5,120 points 1,184 points 6,144 points 512 points

Program
capacity

120 Ksteps
One step is basically
equivalent to one
word. Refer to the end
of 10-5 Instruction
Execution Times and
Number of Steps in
the Operation Manual
for details.

250 Ksteps
One step is basi-
cally equivalent
to one word.
Refer to the end
of 10-5 Instruc-
tion Execution
Times and Num-
ber of Steps in
the Operation
Manual for
details.

2 Kwords
(63.2 Kwords
for -Z)

62 Kwords 15.2 Kwords

Max. data
memory

32 Kwords 32 Kwords 6 Kwords 24 Kwords 6 Kwords

I/O bits 160 words (2,560 bits) 320 words
(5,120 bits)

40 words
(640 bits)

128 words
(2,048 bits)

32 words
(512 bits)

Work bits 2,644 words
(42,304 bits) + WR:
512 words (8,192 bits)
= 3,156 words
(50,496 bits)

2,644 words
(42,304 bits) +
WR: 512 words
(8,192 bits) =
3,156 words
(50,496 bits)

408 words
(6,528 bits)

168 words
(2,688 bits)
+400 words
(6,400 bits)

158 words
(2,528 bits)

Holding bits 512 words (8,192 bits) 512 words
(8,192 bits)

100 words
(1,600 bits)

300 words
(4,800 bits)
Max.: 1,
400 words (2,
400 bits)

100 words
(1,600 bits)

Max.
extended
data mem-
ory

32 Kwords x 7 banks 32 Kwords x
13 banks

6 Kwords x 3
banks (6
Kwords x
16 banks for -Z)

32 Kwords x 8
banks
(Optional)

6 Kwords

Max. No.
timers/
counters

4,096 each 4,096 each Timers/
counters com-
bined: 512

1,024 points Timers/
counters com-
bined: 512

Pro-
cess-
ing
speed

Basic
instructions
(LD)

CJ1: 0.08��s min.
CJ1-H: 0.02��s min.
CJ1M: 0.1��s min.

CS1:
0.04��s min.
CS1-H:
0.02��s min.

0.104��s min. 0.125��s min. 0.375��s min.

Special
instructions
(MOV)

CJ1: 0.25��s min.
CJ1-H: 0.18��s min.
CJ1M: 0.3��s min.

CS1:
0.25��s min.
CS1-H:
0.18��s min.

0.417��s min. 4.3��s min. 17.7��s

System
overhead
time

CJ1: 0.5�ms min.
CJ1-H: 0.3�ms min. in
normal mode, 0.2 ms
in a parallel process-
ing mode
CJ1M: 0.5�ms min.

CS1:
0.5�ms min.
CS1-H: 0.3�ms
min. in normal
mode, 0.2 ms in
a parallel pro-
cessing mode

0.7 ms 0.5 ms 0.7 ms

Delay during
Online Edit
(write)

CJ1: Approx. 12�ms
CJ1-H: Approx. 11�ms
for CPU4@ and
8 ms for CPU6
CJ1M:
Approx. 14�ms

CS1:
Approx. 12�ms
CS1-H: Approx.
11�ms for CPU4@
and
8 ms for CPU6

80 ms (160 ms
for -Z)

500 ms Typically
250 ms
327

PLC Comparison Charts Appendix A
Structure Screw mounting No Yes Yes Yes No

DIN Track mounting Yes Yes Yes No Yes

Backplanes No Yes Yes Yes No

Size (H x D, mm) 90 x 65 130 x 123 130 x 118 250 x 100 110 x 107

Number of
Units/Racks

 I/O Units 40 Units 89 Units (Includ-
ing Slave Racks)

10 or 16 Units 64 Units
(8 Racks x 8
Units)

16 Units

CPU Bus Units 16 Units 16 Units None 16 Units None

Expansion I/O Racks 3 Racks 7 Racks 3 Racks 7 Racks 1 Rack

Task function Yes Yes No No No

CPU process-
ing mode (pro-
gram execution
and peripheral
servicing)

Normal Mode Yes Yes --- --- ---

Peripheral Servicing
Priority Mode

Yes Yes --- --- ---

Parallel Processing
with Synchronous
Memory Access

CJ1: No
CS1-H: Yes
CJ1M: No

CS1: No
CS1-H: Yes

No No No

Parallel Processing
with Asynchronous
Memory Access

CS1: No
CJ1-H: Yes
CJ1M: No

CS1: No
CS1-H: Yes

No No No

I/O refresh for-
mat

Cyclic refreshing Yes Yes Yes Yes Yes

Scheduled refreshing No No No Yes No

Zero-cross refreshing No No No Yes No

Immediate refreshing Yes Yes No Yes No

Immediate refresh-
ing using IORF
instruction

Yes Yes Yes Yes Yes

Clock function Yes Yes Yes Yes Yes (Memory
Cassette
required)

RUN output Yes (Depending on
Power Supply Unit)

Yes (Depending
on Power Supply
Unit)

Yes (Depend-
ing on Power
Supply Unit)

Yes No

Startup Mode (for default PLC Setup
setting when no Programming Console
is connected)

RUN mode CS1: PRO-
GRAM mode
CS1-H: RUN
mode

RUN mode RUN mode PROGRAM
mode

Disabling Power Interrupt Processing CJ1: No
CJ1-H: Yes
CJ1M: Yes

CS1: No
CS1-H: Yes

No No No

Battery-free operation CJ1:
Memory Card
CJ1-H:
Memory Card or flash
memory
CJ1M: Memory Card
or flash memory

CS1:
Memory Card
CS1-H:
Memory Card or
flash memory

Memory Card Memory Card Memory Cas-
sette

Automatic backup to flash memory CJ1: No
CJ1-H: Yes
CJ1M: Yes

CS1: No
CS1-H: Yes

No No No

Restart continuation No No No Yes No

Item CJ Series CS Series C200HX/HG/
HE

CVM1/CV
Series

CQM1H
328

PLC Comparison Charts Appendix A
External mem-
ory

Medium Memory card
(Flash ROM)

Memory card
(Flash ROM)

Memory cas-
sette
(EEPROM,
EPROM)

Memory card
(RAM,
EEPROM,
EPROM)

Memory cas-
sette (ROM,
EEPROM,
EPROM)

Capacity 48 Mbytes 48 Mbytes 4 to 32 Kwords
(4 to 64 Kwords
for -Z)

32 to 512
Kwords (RAM:
64 to
512 Kbytes,
EEPROM: 64
to 128 Kbytes,
EPROM: 0.5 to
1 Mbytes

4 to 16 Kwords

Contents Programs, I/O mem-
ory, parameters

Programs, I/O
memory, parame-
ters

Programs, I/O
memory,
parameters

Programs, I/O
memory,
parameters

Programs,
read-only DM,
parameters

Read/write method Programming Device,
user program (file
memory instructions),
or Host Link

Programming
Device, user pro-
gram (file mem-
ory instructions),
or Host Link

Turning ON SR
bit

Programming
Device, user
program (file
memory
instructions),
Host Link, or
Memory Card
Writer

Turning ON AR
bit

File format Binary Binary Binary Binary Binary

Extended Data Mem-
ory handled as files

Yes (except for CJ1M
CPU Units)

Yes No No No

Programs automati-
cally transferred at
startup

Yes Yes Yes Yes Yes

Inner Board No Serial Communi-
cations Board

Communica-
tions Board

No Communica-
tions Board

Built-in serial ports Yes (RS-232C x 1) Yes (RS-232C x
1)

Yes (RS-232C x
1)

Yes RS-232C
or
RS-422 x 1)

Yes (RS-232C
x 1)

Serial communi-
cations

Pe-
ripher-
al port

Peripheral
bus

Yes Yes Yes Yes Yes

Host Link
(SYSMAC
WAY)

Yes Yes Yes No
(Possible with
connection to
peripheral
interface)

Yes

No protocol No No Yes No Yes

NT Link Yes Yes No No No

CPU
Unit
built-in
RS-
232C
port

Peripheral
bus

Yes Yes Yes No No

Host Link
(SYSMAC
WAY)

Yes Yes Yes Yes Yes

No protocol Yes Yes Yes No Yes

NT Link Yes (1:N) Yes (1:N) Yes No Yes (1:1)

Serial PLC
Links

Yes (CJ1M only) No No No No

RS-
232C
or RS-
422/
RS-
485 on
Com-
muni-
cations
Board

Peripheral
bus

No No Yes No No

Host Link
(SYSMAC
WAY)

No Yes
The WG, MP, and
CR commands
are not sup-
ported.

Yes
The CR com-
mand is not
supported.

Yes
The WG and
MP com-
mands are not
supported.

Yes
The CR com-
mand is not
supported.

No protocol No No Yes No Yes

NT Link No Yes Yes No Yes (1:1 and
1:N)

Protocol
macro

No Yes Yes No Yes

CompoWay/
F Master

No Yes (using proto-
col macro)

Yes (using pro-
tocol macro)

No Yes (using pro-
tocol macro)

Item CJ Series CS Series C200HX/HG/
HE

CVM1/CV
Series

CQM1H
329

PLC Comparison Charts Appendix A
Interrupts I/O interrupts Yes (Max 2 Interrupt
Input Units: 32 points,
plus 4 points for built-
in I/O on CJIM CPU
Units) (CJ1 CPU Units
do not support I/O
interrupts.)

Yes (Max. 4 or 2
Interrupt Input
Units: 32 points)

Yes (Max. 2
Interrupt Input
Units: 16
points)

Yes (Max. 4
Interrupt Input
Units: 32
points)

Yes (4 built into
CPU Bus Unit)

Scheduled interrupts Yes Yes Yes Yes Yes

One-shot timer inter-
rupts

No No No No Yes

Input interrupts in
counter mode

Yes (CJ1M CPU Units
only)

No No No Yes

High-speed counter
interrupts

Yes (CJ1M CPU Units
only)

No No No Yes

External interrupts Yes (CJ1 CPU Units
do not support exter-
nal interrupts.)

Yes No No No

From Communica-
tions Board

No Yes Yes No No

Power-ON interrupt No No No Yes No

Power-OFF interrupt Yes Yes No Yes No

Interrupt response
time

0.17 ms
Built-in I/O on CJ1M
CPU Units:).12 ms

C200H Special I/
O Unit: 1 ms
CJ-series I/O:
0.1 ms

1 ms --- Approx. 0.1 ms

PLC Setup Area No user addresses
(setting possible only
from Programming
Device, including Pro-
gramming Console)

No user
addresses (set-
ting possible only
from Program-
ming Device,
including Pro-
gramming Con-
sole)

Fixed DM Area
allocation: DM
6600 to
DM 6655,
DM 6550 to
DM 6559.
Setting possi-
ble from Pro-
gramming
Console.

No user
addresses (set-
ting possible
only from Pro-
gramming
Device, includ-
ing partially
from Program-
ming Console)

Fixed DM Area
allocation: DM
6600 to
DM 6655. Set-
ting possible
from Program-
ming Console.

Item CJ Series CS Series C200HX/HG/
HE

CVM1/CV
Series

CQM1H
330

PLC Comparison Charts Appendix A
Initial
set-
tings

I/O Input response time
for Basic I/O Unit

Set in PLC Setup Set in PLC Setup No No Set in PLC
Setup

Rack first addresses Set in I/O table from
Programming Device
(but order of rack
numbers is fixed).

Set in I/O table
from Program-
ming Device (but
order of rack
numbers is fixed).

No Set in PLC
Setup (Rack
No. order can
be set.)

No

First address of SYS-
MAC BUS Optical I/O
Units by Master

No No No Set in PLC
Setup

No

Operation for I/O ver-
ification error

No No No Set in PLC
Setup

No

Mem-
ory

User memory protec-
tion

Set on DIP switch Set on DIP switch Set on DIP
switch

Determined by
key switch set-
ting

Set on DIP
switch

Holding areas No No No Set in PLC
Setup

No

Holding I/O words for
fatal errors (except
power failure)

No No No Set in PLC
Setup

No

Memory saved using
IOM Hold Bit when
power to PLC is
turned ON

Set in PLC Setup Set in PLC Setup Set in PLC
Setup

Set in PLC
Setup

Set in PLC
Setup

Memory saved using
Forced Status Hold
Bit when power to
PLC is turned ON

Set in PLC Setup Set in PLC Setup Set in PLC
Setup

Set in PLC
Setup

Set in PLC
Setup

DIP switch status
monitoring

Yes Yes Yes No Yes

Instruc-
tions

Setting indirect DM
data to BCD or
binary

Direct input possible Direct input pos-
sible

No Set in PLC
Setup

No

Multiple use of
JMP(0) instruction

Multiple use already
possible

Multiple use
already possible

No Set in PLC
Setup

No

Operation for instruc-
tion errors (Continue
or stop)

Set in PLC Setup Set in PLC Setup No No No

Background execu-
tion

CJ1: No
CJ1-H: Yes
CJ1M: Yes

CS1: No
CS1-H: Yes

No No No

File
mem-
ory

Automatic transfer at
startup

Determined by DIP
switch setting (Auto-
matically read from
Memory Card)

Determined by
DIP switch set-
ting (Automati-
cally read from
Memory Card)

Determined by
DIP switch set-
ting (Automati-
cally read from
memory cas-
sette)

Set in PLC
Setup or DIP
switch setting
(Automatically
read from
Memory Card)

Determined by
DIP switch set-
ting (Automati-
cally read from
Memory Card)

Convert to EM file Set in PLC Setup Set in PLC Setup No No No

Inter-
rupts

Interrupt response No No Set in PLC
Setup
(C200H/High-
speed
response)

No No

 Error detection Set in PLC Setup Set in PLC Setup Set in PLC
Setup

No No

Holding I/O inter-
rupts during I/O inter-
rupt program
execution

No No No Set in PLC
Setup

No

Power OFF interrupt
enabled/disabled

Set in PLC Setup Set in PLC Setup No Set in PLC
Setup

No

Scheduled interrupt
interval setting

Set in PLC Setup
(10 ms, 1.0 ms) (also,
0.1 ms for CJ1M CPU
Unit only)

Set in PLC Setup
(10 ms, 1.0 ms)

Set in PLC
Setup

Set in PLC
Setup (10 ms,
1 ms, 0.5 ms)

No

Item CJ Series CS Series C200HX/HG/
HE

CVM1/CV
Series

CQM1H
331

PLC Comparison Charts Appendix A
Initial
set-
tings
(contd.)

Power
supply

Restart Continuation
Bit Hold

No No No Set in PLC
Setup

No

Startup mode Set in PLC Setup Set in PLC Setup Set in PLC
Setup

Set in PLC
Setup

Set in PLC
Setup

Startup Condition
Settings

CJ1: No
CJ1-H: Yes
CJ1M: Yes

CS1: No
CS1-H: Yes

No No No

Startup trace No No No Set in PLC
Setup

No

Detect low battery
voltage

Set in PLC Setup Set in PLC Setup Set in PLC
Setup

Set in PLC
Setup

Set in PLC
Setup

Momentary power
interruption time

No No No Set in PLC
Setup

No

Power OFF detec-
tion delay time

Set in PLC Setup Set in PLC Setup Set in PLC
Setup
(Time that oper-
ation will con-
tinue after
power OFF has
been detected)

No No

Momentary power
interruption as fatal/
non-fatal error

No No No Set in PLC
Setup

No

Cycles I/O refresh No No Set in PLC
Setup (Special
I/O Units only)

Set in PLC
Setup

No

Constant cycle time Set in PLC Setup(1 to
32,000 ms)

Set in PLC
Setup(1 to
32,000 ms)

Set in PLC
Setup(1 to
9,999 ms)

Set in PLC
Setup (1 to
32,000 ms)

Set in PLC
Setup(1 to
9,999 ms)

Monitor cycle time Set in PLC Setup (10
to 40,000 ms) (Initial
setting: 1,000 ms
fixed)

Set in PLC Setup
(10 to 40,000 ms)
(Initial setting:
1,000 ms fixed)

Set in PLC
Setup (0 to 99)
Unit: 1 s, 10 ms,
100 ms (Initial
setting: 120 ms
fixed)

Set in PLC
Setup (10 to
40,000 ms)
(Initial setting:
1,000 ms fixed)

Set in PLC
Setup (0 to 99)
Unit: 1 s, 10
ms, 100 ms
(Initial setting:
120 ms fixed)

Detect cycle time
over disable

No No Set in PLC
Setup

No Set in PLC
Setup

Asynchronous
instruction execution
and peripheral ser-
vicing

No No No Set in PLC
Setup

No

Serial
com-
muni-
cations

RS-232C port com-
munications settings

DIP switch setting for
auto-detect or PLC
Setup

DIP switch set-
ting for auto-
detect or PLC
Setup

DIP switch set-
ting for defaults
or PLC Setup

DIP switch set-
ting for defaults
or PLC Setup

DIP switch set-
ting for defaults
or PLC Setup

Peripheral port com-
munications settings

Set in PLC Setup Set in PLC Setup PLC Setup Set on DIP
switch.

Set in PLC
Setup

Communications
Board communica-
tions settings

No No PLC Setup No PLC Setup

CPU
pro-
cess-
ing
mode

Parallel processing
modes

CJ1: No
CJ1-H: Yes
CJ1M: No

CS1: No
CS1-H: Yes

No No No

Peripheral Servicing
Priority Mode

Yes Yes No No No

Servic-
ing
other
periph-
erals

Service time Set in PLC Setup
(Fixed Peripheral Ser-
vicing Time)

Set in PLC Setup
(Fixed Peripheral
Servicing Time)

Set in PLC
Setup
(Built-in RS-
232C port,
Communica-
tions Board,
peripheral port)

No Set in PLC
Setup
(Built-in RS-
232C port,
Communica-
tions Board,
peripheral port)

Measure CPU Bus
Unit service interval

No No No Set in PLC
Setup

No

Stop Special I/O Unit
Cyclic Refreshing

Set in PLC Setup Set in PLC Setup Set in PLC
Setup

No No

CPU Bus link appli-
cation

No No No Set in PLC
Setup

No

Item CJ Series CS Series C200HX/HG/
HE

CVM1/CV
Series

CQM1H
332

PLC Comparison Charts Appendix A
Initial
set-
tings
(contd.)

Pro-
gram-
ming
Con-
sole

Programming Con-
sole language

Set on DIP switch CS1: Set on DIP
switch
CS1-H: Set from
Programming
Console

Set on DIP
switch

No Set on DIP
switch

Errors Error Log Area No (Fixed) No (Fixed) No (Fixed:
DM 6001 to
DM6030)

Set in PLC
Setup

No (Fixed:
DM 6569 to
DM 6599)

Not registering user-
defined FAL errors in
error log

CJ1: No
CJ1-H: Yes
CJ1M: Yes

CS1: No
CS1-H: Yes

No No No

Opera-
tion

CPU Standby No No No Set in PLC
Setup

No

Auxil-
iary
Area

Condi-
tion
Flags

ER, CY, <, >, =,
Always ON/OFF
Flag, etc.

Input using symbols,
e.g., ER.

Input using sym-
bols, e.g., ER.

Yes Yes Yes

Clock pulses Input using symbols,
e.g., 0.1 s.

Input using sym-
bols, e.g., 0.1 s.

Yes Yes Yes

Servic-
ing

CPU Service Dis-
able Bit

No No No Yes No

Codes for connected
devices

No No No Yes No

Peripherals process-
ing cycle times

No No No Yes No

CPU Bus Unit ser-
vice interval

No No No Yes No

Peripherals con-
nected to CPU
enabled/disabled

No No No Yes No

Host Link/NT Link
Service Disable Bit

No No No Yes No

Peripheral Service
Disable Bit

No No No Yes No

Scheduled Refresh
Disable Bit

No No No Yes No

Inner Board General
Purpose Monitoring
Area

No Yes Yes No Yes

Cycle time over Yes Yes Yes Yes Yes

Tasks First Task Flag Yes Yes No (Only First
Scan Flag)

No (Only First
Scan Flag)

No (Only First
Scan Flag)

Debug-
ging

Online Editing Dis-
abled Flag

Yes Yes Yes (AR) No No

Online Edit Standby
Flag

Yes Yes Yes (AR) No No

Output OFF Bit Yes Yes Yes Yes Yes

Forced Status Hold
Bit

Yes Yes Yes Yes Yes

File
mem-
ory

File Memory Instruc-
tion Flag

Yes Yes No Yes No

EM File Memory For-
mat Error Flag

Yes (Except for CJ1M
CPU Units)

Yes No No No

EM File Format Start-
ing Bank

Yes (Except for CJ1M
CPU Units)

Yes No No No

Mem-
ory

DIP Switch Status
Flags

Yes (pin 6) Yes (pin 6) Yes (AR, pin 6
only)

No Yes (AR, pin 6)

IOM Hold Bit Yes Yes Yes Yes Yes

Inter-
rupts

Max. subroutine/
action processing
time

Yes Yes Yes No No

Interrupt Task Error
Flag

Yes Yes Yes No No

Item CJ Series CS Series C200HX/HG/
HE

CVM1/CV
Series

CQM1H
333

PLC Comparison Charts Appendix A
Auxil-
iary
Area,
contd

Errors Error log storage
area/pointer

Yes Yes No Yes No

Error codes Yes Yes Yes Yes Yes

Initial
set-
tings

Initializing PLC Setup No No Yes No Yes

Com-
muni-
cations

PLC Link Operating
Level Flags

Yes (PLC Link Auxil-
iary Area bit)

Yes (PLC Link
Auxiliary Area bit)

Yes (AR) No No

Power
supply

Power Interruption
Flag

No No No Yes No

Power Interruption
Time

No No No Yes No

Power ON Time Yes Yes No Yes No

Time at Power Inter-
ruption (including
power OFF)

Yes Yes No Yes Yes

Number of Momen-
tary Power Interrup-
tions

Yes (Number of power
interruptions)

Yes (Number of
power interrup-
tions)

Yes (Number of
power interrup-
tions)

Yes Yes (Number of
power interrup-
tions)

Total Power ON Time Yes Yes No No No

Allocation meth-
ods

Format Allocation is based on
number of words
required by Units in
order of connection.

Allocation is
based on num-
ber of words
required by Units
and vacant slots
are skipped.

Fixed word allo-
cation: Each
Unit is automat-
ically allocated
one word

Allocation is
based on num-
ber of words
required by
Units and
vacant slots
are skipped.

Allocation is
based on num-
ber of words
required by
Units in order
of connection.

Group 2 High-den-
sity I/O Unit alloca-
tion

None Same as for
Basic I/O

Group-2 alloca-
tion area in IR
Area (position
determined by
front panel
switch)

None None

Word reservation
method

Change I/O table from
CX-Programmer.

Change I/O table
from CX-Pro-
grammer.

Create I/O table
with empty slot
or change I/O
table made
from CX-Pro-
grammer.

Dummy I/O
Unit or change
I/O table from
CX-Program-
mer.

Automatic allo-
cation at star-
tup.

Spe-
cial I/O
Unit
alloca-
tion

CIO Area Allocation in Special I/
O Unit Area accord-
ing to Unit No.
10 words per Unit for
total of 96 Units.

Allocation in Spe-
cial I/O Unit Area
according to Unit
No. 10 words per
Unit for total of 96
Units.

Allocation in
Special I/O Unit
Area (in IR
Area) accord-
ing to Unit No.
10 words per
Unit for total of
16 Units.

Same as for
Basic I/O Units;
2 or 4 words
allocated in I/O
Area (differs for
each Unit)

Same as for
Basic I/O Units;
1, 2, or 4 words
allocated in I/O
Area (differs for
each Unit)

DM Area Allocation in D20000
to D29599 according
to unit number,
100 words per Unit for
total of 96 Units.

Allocation in
D20000 to
D29599 accord-
ing to unit num-
ber, 100 words
per Unit for total
of 96 Units.

Allocation in
DM 1000 to
DM 1999, and
DM 2000 to
DM 2599 100
words per Unit
for total of 16
Units.

None None

CPU
Bus
Unit/
CPU
Bus
Unit
alloca-
tion

CIO Area Allocation in CPU Bus
Unit Area according to
Unit No. 25 words per
Unit for total of 16
Units.

Allocation in CPU
Bus Unit Area
according to Unit
No. 25 words per
Unit for total of 16
Units.

None Allocation in
CPU Bus Unit
Area accord-
ing to Unit No.
25 words per
Unit for total of
16 Units.

None

DM Area Allocation in D30000
to D31599 according
to Unit No. 100 words
per Unit for total of 16
Units.

Allocation in
D30000 to
D31599 accord-
ing to Unit No.
100 words per
Unit for total of 16
Units.

None Allocation in
D02000 to
D03599
according to
Unit No.
100 words per
Unit for total of
16 Units.

None

Item CJ Series CS Series C200HX/HG/
HE

CVM1/CV
Series

CQM1H
334

PLC Comparison Charts Appendix A
I/O Memory CIO Area Yes Yes Yes Yes Yes

WR Area Yes Yes No No No

Temporary Relay
Area

Yes Yes Yes Yes Yes

Auxiliary Area Yes Yes Yes Yes Yes

SR Area No No Yes No Yes

Link Area Yes (Data Link Area) Yes (Data Link
Area)

Yes (Data Link
Area)

No Yes

C200H Special I/O
Unit Area

Yes Yes Yes (CIO Area) No No

Built-in I/O Area Yes (CJ1M CPU Unit
with built-in I/O only)

No No No No

Serial PLC Link Area Yes (CJ1M CPU Unit
only)

No No No No

DM Area Yes Yes Yes Yes Yes

Extended Data Mem-
ory (EM) Area

Yes (Addresses
including bank No.
can be designated)
(Not supported by
CJ1M CPU Unit)

Yes (Addresses
including bank
No. can be desig-
nated)

Yes (Addresses
can be desig-
nated for -Z, but
banks cannot)

Yes (Address
including bank
cannot be des-
ignated; bank
must be
changed. EM
Unit required.)

Yes (no banks)

Timer/Counter Area Yes Yes Yes Yes Yes

Index Registers Yes Yes No Yes No

Data Registers Yes Yes No Yes No

Force-
set/
reset
areas

CIO Area Yes Yes Yes Yes None

WR Area Yes Yes No No Yes

Holding
Area

Yes Yes Yes No No

Auxiliary
Area

No No Yes No Yes

SR Area No No No No No

Link Area No No Yes No No

Timer/
Counters

Yes (Flag) Yes (Flag) Yes (Flag) Yes (Flag) Yes (Flag)

DM Area No No No No No

EM Area No No No No No

Instruction varia-
tions/ indirect
addresses

Upward differentia-
tion (executed once)

Yes (Specified by @) Yes (Specified by
@)

Yes (Specified
by @)

Yes (Specified
by �)

Yes (Specified
by @)

Downward differenti-
ation (executed once)

Yes (Specified by %) Yes (Specified by
%)

No (DIFD
instruction used
instead)

Yes
(Specified by
�)

No (achieved
by using DIFD)

Immediate refresh Yes (Specified by !) Yes (Specified by
!)

No (IORF
instruction used
instead)

Yes
(Specified by !)

No (achieved
by using IORF)

Indi-
rect
ad-
dress-
ing for
DM/
EM

BCD mode Yes (0000 to 9999)
Asterisk is used.

Yes (0000 to
9999)
Asterisk is used.

Yes (0 to 9999) Yes (0 to 9999) Yes (0000 to
9999)
Asterisk is
used.

Binary mode Yes (00000 to 32767)
@ is used.
0000 to 7FFF Hex:
0000 to 31767
8000 to FFFF Hex:
00000 to 32767 in
next bank

Yes (00000 to
32767)
@ is used.
0000 to 7FFF
Hex: 0000 to
31767
8000 to FFFF
Hex: 00000 to
32767 in next
bank

No Yes, but only
for indirect
addressing
using PLC
memory
addresses.

No

Item CJ Series CS Series C200HX/HG/
HE

CVM1/CV
Series

CQM1H
335

PLC Comparison Charts Appendix A
Instruction Comparison
Item Mne-

monic
CJ Series CS Series C200HX/HG/HE CVM1/CV

Series
CQM1H

Sequence
Input
Instructions

LOAD/AND/OR LD/
AND/
OR

Yes Yes Yes Yes Yes

AND LOAD/OR
LOAD

AND
LD/OR
LD

Yes Yes Yes Yes Yes

NOT NOT Yes Yes Yes Yes No

CONDITION ON UP Yes Yes No Yes (*1) No

CONDITION OFF DOWN Yes Yes No Yes (*1) No

BIT TEST TST/
TSTN

Yes (Bit position
specified in
binary:
0000 to 000F
Hex.)

Yes (Bit position
specified in
binary:
0000 to 000F
Hex.)

Yes (Bit position
specified in
BCD.) (*2)

Yes (Bit position
specified in
BCD.) (*1)

No

Sequence
Output
Instructions

OUTPUT OUT Yes Yes Yes Yes Yes

TR TR Yes Yes Yes Yes Yes

KEEP KEEP Yes Yes Yes Yes Yes

DIFFERENTIATE
UP/DOWN

DIFU/
DIFD

Yes (LD�,
AND�, OR�)
(LD�, AND�,
OR�)

Yes (LD�,
AND�, OR�)
(LD�, AND�,
OR�)

Yes (DIFU/
DIFD)

Yes (LD�,
AND�, OR�)/
(LD�,�AND�,
OR�)

Yes (DIFU/
DIFD)

SET and RESET SET/
RSET

Yes Yes Yes Yes Yes

MULTIPLE BIT
SET/RESET

SETA/
RSTA

Yes (Beginning
bit and number
of bits specified
in binary.)

Yes (Beginning
bit and number
of bits specified
in binary.)

No (*1)
(Beginning bit
and number of
bits specified in
BCD.)

No

SINGLE BIT SET/
RESET

SET/
RSTB

CJ1: No
CJ1-H: Yes
CJ1M: Yes

CS1: No
CS1-H: Yes

No No No

SINGLE BIT OUT-
PUT

OUTB CJ1: No
CJ1-H: Yes
CJ1M: Yes

CS1: No
CS1-H: Yes

No No No

Sequence
Control
Instructions

END/NO OPERA-
TION

END/
NOP

Yes Yes Yes Yes Yes

INTERLOCK/
INTERLOCK
CLEAR

IL/ILC Yes Yes Yes Yes Yes

JUMP/JUMP END JMP/
JME

Yes (Jump num-
ber specified in
BCD: 0 to 1023)

Yes (Jump num-
ber specified in
BCD: 0 to 1023)

Yes (Jump num-
ber specified in
BCD: 0 to 99.)

Yes (Jump num-
ber specified in
BCD: 0 to 999.)

Yes (Jump num-
ber specified in
BCD: 0 to 99.)

CONDITIONAL
JUMP

CJP/
CJPN

Yes (Jump num-
ber specified in
BCD: 0 to 1023.)

Yes (Jump num-
ber specified in
BCD: 0 to 1023.)

No Yes (Jump num-
ber specified in
BCD: 0 to 999.)
(*1)

No

MULTIPLE JUMP/
JUMP END

JMP0/
JME0

Yes Yes No No (but PLC
Setup can be set
to enable multi-
ple jumps with
jump number 0)

No

FOR/NEXT
LOOPS

FOR/
NEXT

Yes Yes No No No

BREAK LOOP BREAK Yes Yes No No No
336

PLC Comparison Charts Appendix A
Timer and
Counter
Instructions

TIMER TIM
(BCD)

Yes Yes Yes Yes Yes

TIMX
(binary)

Yes(*4) Yes(*4) No No No

HIGH-SPEED
TIMER

TIMH
(BCD)

Yes Yes Yes Yes Yes

TIMHX
(binary)

Yes(*4) Yes(*4) No No No

ONE-MS TIMER TMHH
(BCD)

Yes Yes No No No

TMHHX
(binary)

Yes(*4) Yes(*4) No No No

ACCUMULATIVE
TIMER

TTIM
(BCD)

Yes Yes Yes Yes Yes

TTIMX
(binary)

Yes(*4) Yes(*4) No No No

LONG TIMER TIML
(BCD)

Yes Yes No Yes No

TIMLX
(binary)

Yes(*4) Yes(*4) No No No

MULTI-OUTPUT
TIMER

MTIM
(BCD)

Yes Yes No Yes No

MTIMX
(binary)

Yes(*4) Yes(*4) No No No

COUNTER CNT
(BCD)

Yes Yes Yes Yes Yes

CNTX
(binary)

Yes(*4) Yes(*4) No No No

REVERSIBLE
COUNTER

CNTR
(BCD)

Yes Yes Yes Yes Yes

CNTRX
(binary)

Yes(*4) Yes(*4) No No No

RESET TIMER/
COUNTER

CNR
(BCD)

Yes (Only resets
timer or
counter.)

Yes (Only resets
timer or
counter.)

No Yes (Also clears
specified range
in CIO area to
zero.)

No

CNRX
(binary)

Yes(*4) Yes(*4) No No No

Compari-
son Instruc-
tions

Symbol compari-
son

=, <,
etc.

Yes (All are sup-
ported for LD,
OR, and AND)

Yes (All are sup-
ported for LD,
OR, and AND)

Yes (*2) (Sup-
ported for AND
only)

Yes (*1) (Sup-
ported for AND
only)

No

COMPARE/
DOUBLE
COMPARE

CMP/
CMPL

Yes Yes Yes Yes (*3) Yes

SIGNED BINARY
COMPARE/
DOUBLE SIGNED
BINARY COM-
PARE

CPS/
CPSL

Yes Yes Yes Yes (*1) Yes

BLOCK COM-
PARE

BCMP Yes Yes Yes Yes Yes

EXTENDED
BLOCK COMPARE

BCMP2 Yes (CJ1M CPU
Units only)

No No No No

TABLE COMPARE TCMP Yes Yes Yes Yes Yes

MULTIPLE
COMPARE

MCMP Yes Yes Yes Yes Yes

EQUALS EQU No No No Yes No

AREA RANGE
COMPARE

ZCP/
ZCPL

CJ1: No
(achieved using
comparison
instructions)
CJ1-H: Yes
CJ1M: Yes

CS1: No
(achieved using
comparison
instructions)
CS1-H: Yes

Yes No No (achieved
using compari-
son instructions)

Item Mne-
monic

CJ Series CS Series C200HX/HG/HE CVM1/CV
Series

CQM1H
337

PLC Comparison Charts Appendix A
Data Move-
ment
Instruction

MOVE MOV Yes Yes Yes Yes Yes

DOUBLE MOVE MOVL Yes Yes No Yes No

MOVE NOT MVN Yes Yes Yes Yes Yes

DOUBLE MOVE MVNL Yes Yes No Yes No

DATA EXCHANGE XCHG Yes Yes Yes Yes Yes

DOUBLE DATA
EXCHANGE

XCGL Yes Yes No Yes No

MOVE QUICK MOVQ No No No Yes No

BLOCK TRANS-
FER

XFER Yes (Number
of words to be
transferred
specified in
binary: 0 to
65535.)

Yes (Number
of words to be
transferred
specified in
binary: 0 to
65535.)

Yes (Number
of words to be
transferred
specified in
BCD: 0 to 6144.)

Yes (Number
of words to be
transferred
specified in
BCD: 0 to 9999.)

Yes (Number
of words to be
transferred
specified in
BCD: 0 to 9999.)

BLOCK SET BSET Yes Yes Yes Yes Yes

MOVE BIT MOVB Yes (Source bit
position and
destination bit
position speci-
fied in binary.)

Yes (Source bit
position and
destination bit
position speci-
fied in binary.)

Yes (Source bit
position and
destination bit
position speci-
fied in BCD.)

Yes (Source bit
position and
destination bit
position speci-
fied in BCD.)

Yes (Source bit
position and
destination bit
position speci-
fied in BCD.)

MULTIPLE BIT
TRANSFER

XFRB Yes Yes Yes Yes (*1) Yes

MOVE DIGIT MOVD Yes Yes Yes Yes Yes

SINGLE WORD
DISTRIBUTE

DIST Yes (Stack oper-
ation function is
possible with
another instruc-
tion. Offset value
specified in
binary: 0 to
65535.)

Yes (Stack oper-
ation function is
possible with
another instruc-
tion. Offset value
specified in
binary: 0 to
65535.)

Yes (Stack oper-
ation function is
possible. Offset
value specified
in BCD: 0 to
8999.)

Yes (Stack oper-
ation function is
possible with
another instruc-
tion. Offset value
specified in
BCD: 0 to 9999.)

Yes (Stack oper-
ation function is
possible. Offset
value specified
in BCD: 0 to
8999.)

DATA COLLECT COLL Yes (Stack oper-
ation function is
possible with
another instruc-
tion. Offset value
specified in
binary: 0 to
65535.)

Yes (Stack oper-
ation function is
possible with
another instruc-
tion. Offset value
specified in
binary: 0 to
65535.)

Yes (Stack oper-
ation function is
possible. Offset
value specified
in BCD: 0 to
7999.)

Yes (Stack oper-
ation function is
possible with
another instruc-
tion. Offset value
specified in
BCD: 0 to 9999.)

Yes (Stack oper-
ation function is
possible. Offset
value specified
in BCD: 0 to
7999.)

EM BLOCK
TRANSFER
BETWEEN BANKS

BXFR No (Functionally
possible for up
to 65,535 words
by directly
addressing EM
area using
XFER)

No (Functionally
possible for up
to 65,535 words
by directly
addressing EM
area using
XFER)

No Yes (*1) No

EM BLOCK
TRANSFER

XFR2 No No Yes No No

EM BANK TRANS-
FER

BXF2 No No Yes No No

MOVE TO REGIS-
TER

MOVR Yes (No address
is specified for
indirect DM/EM.)

Yes (No address
is specified for
indirect DM/EM.)

No Yes (Address is
specified for
indirect EM/DM.)

No

MOVE TIMER/
COUNTER PV TO
REGISTER

MOVR
W

Yes Yes No No (Possible for
Completion
Flags only using
MOVR)

No

Item Mne-
monic

CJ Series CS Series C200HX/HG/HE CVM1/CV
Series

CQM1H
338

PLC Comparison Charts Appendix A
Data Shift
Instructions

SHIFT REGISTER SFT Yes Yes Yes Yes Yes

REVERSIBLE
SHIFT REGISTER

SFTR Yes Yes Yes Yes Yes

ASYNCHRO-
NOUS SHIFT
REGISTER

ASFT Yes Yes Yes Yes Yes

WORD SHIFT WSFT Yes (Same as
CV: 3 operands)

Yes (Same as
CV: 3 operands)

Yes Yes Yes

ARITHMETIC
SHIFT LEFT/
ARITHMETIC
SHIFT RIGHT

ASL/
ASR

Yes Yes Yes Yes Yes

ROTATE LEFT/
ROTATE RIGHT

ROL/
ROR

Yes Yes Yes Yes Yes

ONE DIGIT SHIFT
LEFT/ONE DIGIT
SHIFT RIGHT

SLD/
SRD

Yes Yes Yes Yes Yes

SHIFT N-BIT
DATA LEFT/SHIFT
N-BIT DATA
RIGHT

NSFR/
NSFL

Yes (Shift data
and beginning
bit specified in
binary.)

Yes (Shift data
and beginning
bit specified in
binary.)

No Yes (Shift data
and beginning
bit specified in
BCD.) (*1)

No

SHIFT N-BITS
LEFT/SHIFT N-
BITS RIGHT/DOU-
BLE SHIFT N-BITS
LEFT/DOUBLE
SHIFT NITS
RIGHT

NASL/
NASR,
NSLL/
NSRL

Yes (Number
of bits to be
shifted specified
in binary.)

Yes (Number
of bits to be
shifted specified
in binary.)

No Yes (Number
of bits to be
shifted specified
in BCD.) (*1)

No

DOUBLE SHIFT
LEFT/DOUBLE
SHIFT RIGHT

ASLL/
ASRL

Yes Yes No Yes No

DOUBLE ROTATE
LEFT/DOUBLE
ROTATE RIGHT

ROLL/
RORL

Yes Yes No Yes No

ROTATE LEFT
WITHOUT
CARRY/ROTATE
RIGHT WITHOUT
CARRY/DOUBLE
ROTATE LEFT
WITHOUT
CARRY/DOUBLE
ROTATE RIGHT
WITHOUT CARRY

RLNC/
RRNC,
RLNL/
RRNL

Yes Yes No Yes (*1) No

Increment
and Decre-
ment
Instructions

INCREMENT BCD/
DECREMENT
BCD

++B/– –
B (INC/
DEC)

Yes (++B/– –B) Yes (++B/– –B) Yes (INC/DEC) Yes (INC/DEC) Yes (INC/DEC)

DOUBLE INCRE-
MENT BCD/DOU-
BLE DECREMENT
BCD

++BL/–
–BL
(INCL/
DECL)

Yes (++BL/– –
BL)

Yes (++BL/– –
BL)

No Yes (INCL/
DECL)

No

INCREMENT
BINARY/ DECRE-
MENT BINARY

++/– –
(INCB/
DECB)

Yes (CY turns
ON for carry or
borrow) (++/– –)

Yes (CY turns
ON for carry or
borrow) (++/– –)

No Yes No

DOUBLE INCRE-
MENT BINARY/
DOUBLE DECRE-
MENT BINARY

++L/– –
L
INBL/
DCBL)

Yes (CY turns
ON for carry or
borrow) (++L/– –
L)

Yes (CY turns
ON for carry or
borrow) (++L/– –
L)

No Yes No

Math Instructions Yes Yes Yes Yes Yes

Item Mne-
monic

CJ Series CS Series C200HX/HG/HE CVM1/CV
Series

CQM1H
339

PLC Comparison Charts Appendix A
Conversion
Instructions

BCD-TO-BINARY/
DOUBLE BCD-TO-
DOUBLE BINARY

BIN/
BINL

Yes Yes Yes Yes Yes

BINARY-TO-BCD/
DOUBLE BINARY-
TO-DOUBLE BCD

BCD/
BCDL

Yes Yes Yes Yes Yes

2’S COMPLE-
MENT/ DOUBLE
2’S COMPLE-
MENT

NEG/
NEGL

Yes (Same as
CV but UP does
not turn ON for
8000 Hex at
source)

Yes (Same as
CV but UP does
not turn ON for
8000 Hex at
source)

Yes Yes Yes

16-BIT TO 32-BIT
SIGNED BINARY

SIGN Yes Yes No Yes No

DATA DECODER MLPX Yes Yes Yes Yes Yes

DATA ENCODER DMPX Yes (Same as
CVM1-V2: Can
specify rightmost
bit for ON.)

Yes (Same as
CVM1-V2: Can
specify rightmost
bit for ON.)

Yes (Leftmost bit
only for ON.)

Yes (CVM1-V2:
Can specify
rightmost bit for
ON.)

Yes (Leftmost bit
only for ON.)

ASCII CONVERT ASC Yes Yes Yes Yes Yes

ASCII TO HEX HEX Yes Yes Yes Yes (*1) Yes

COLUMN TO
LINE/LINE TO
COLUMN

LINE/
COLM

Yes (Bit position
specified in
binary.)

Yes (Bit position
specified in
binary.)

Yes (Bit position
specified in
BCD)

Yes (Bit position
specified in
BCD)

Yes (Bit position
specified in
BCD)

SIGNED BCD-TO-
BINARY/DOUBLE
SIGNED BCD-TO-
BINARY

BINS/
BISL

Yes Yes No Yes (*1) No

SIGNED BINARY-
TO-BCD/DOUBLE
SIGNED BINARY-
TO-BCD

BCDS/
BDSL

Yes Yes No Yes (*1) No

Logic
Instructions

LOGICAL AND/
LOGICAL OR/
EXCLUSIVE OR/
EXCLUSIVE NOR

ANDW,
ORW,
XORW,
XNRW

Yes Yes Yes Yes Yes

DOUBLE LOGI-
CAL AND/DOU-
BLE LOGICAL OR/
DOUBLE EXCLU-
SIVE OR/DOU-
BLE EXCLUSIVE
NOR

ANDL,
ORWL,
XORL,
XNRL

Yes Yes No Yes No

COMPLEMENT/
DOUBLE COM-
PLEMENT

COM/
COML

Yes Yes Yes (COM only) Yes Yes (COM only)

Special
Math
Instructions

BCD SQUARE
ROOT

ROOT Yes Yes Yes Yes Yes

BINARY ROOT ROTB Yes Yes No Yes (*1) No

ARITHMETIC
PROCESS

APR Yes Yes Yes Yes Yes

FLOATING POINT
DIVIDE

FDIV Yes Yes Yes Yes No

BIT COUNTER BCNT Yes (Number of
words to count
and count
results in binary:
0 to FFFF Hex)

Yes (Number of
words to count
and count
results in binary:
0 to FFFF Hex)

Yes (Number of
words to count
and count
results in BCD: 1
to 6656)

Yes (Number of
words to count
and count
results in BCD: 0
to 9999, but
error for 0)

Yes (Number of
words to count
and count
results in BCD: 1
to 6656)

Item Mne-
monic

CJ Series CS Series C200HX/HG/HE CVM1/CV
Series

CQM1H
340

PLC Comparison Charts Appendix A
Floating-
point Math
Instructions

FLOATING TO 16-
BIT/32-BIT BIN,
16-BIT/32-BIT BIN
TO FLOATING

FIX/
FIXL,
FLT/
FLTL

Yes Yes No Yes (*1) Yes

FLOATING-POINT
ADD/FLOATING-
POINT SUB-
TRACT/FLOAT-
ING-POINT
MULTIPLY/
FLOATING-POINT
DIVIDE

+F, –F,
*F, /F

Yes Yes No Yes (*1) Yes

DEGREES TO
RADIANS/RADI-
ANS TO
DEGREES

RAD,
DEG

Yes Yes No Yes (*1) Yes

SINE/COSINE/
TANGENT/ARC
SINE/ARC TAN-
GENT

SIN,
COS,
TAN,
ASIN,
ACOS,
ATAN

Yes Yes No Yes (*1) Yes

SQUARE ROOT SQRT Yes Yes No Yes (*1) Yes

EXPONENT EXP Yes Yes No Yes (*1) Yes

LOGARITHM LOG Yes Yes No Yes (*1) Yes

EXPONENTIAL
POWER

PWR Yes Yes No No No

Floating-point Dec-
imal Comparison

Exam-
ples: =F,
<>F

CJ1: No
CJ1-H: Yes
CJ1M: Yes

CS1: No
CS1-H: Yes

No No No

Floating-point Dec-
imal to Text String

FSTR,
FVAL

CJ1: No
CJ1-H: Yes
CJ1M: Yes

CS1: No
CS1-H: Yes

No No No

Double-pre-
cision
Floating-
point Con-
version and
Calculation
Instructions

Same as Single-
precision Floating-
point Conversion
and Calculation
Instructions, above

Exam-
ple:
FIXD

CJ1: No
CJ1-H: Yes
CJ1M: Yes

CS1: No
CS1-H: Yes

No No No

Item Mne-
monic

CJ Series CS Series C200HX/HG/HE CVM1/CV
Series

CQM1H
341

PLC Comparison Charts Appendix A
Table Data
Processing
Instructions

SET STACK SSET Yes (Four words
of stack control
information.
Number of
words specified
in binary: 5 to
65535)

Yes (Four words
of stack control
information.
Number of
words specified
in binary: 5 to
65535)

No Yes (Four words
of stack control
information.
Number of
words specified
in BCD: 3 to
9999)

No

PUSH ONTO
STACK:

PUSH Yes Yes No Yes No

FIRST IN FIRST
OUT

FIFO Yes Yes No Yes No

LAST IN FIRST
OUT

LIFO Yes Yes No Yes No

FIND MAXIMUM/
FIND MINIMUM

MAX,
MIN

Yes (Two words
in control data
field. Table
length specified
in binary: 1 to
FFFF)

Yes (Two words
in control data
field. Table
length specified
in binary: 1 to
FFFF)

Yes (One word
in control data
field. Table
length specified
in BCD: 1 to
999)

Yes (One word
in control data
field. Table
length specified
in BCD: 1 to
999)

Yes (One word
in control data
field. Table
length specified
in BCD: 1 to
999)

DATA SEARCH SRCH Yes (Table
length specified
in binary: 1 to
FFFF. PLC
memory address
output to IR0.
Number of
matches can be
output to DR0)

Yes (Table
length specified
in binary: 1 to
FFFF. PLC
memory address
output to IR0.
Number of
matches can be
output to DR0)

Yes (Table
length specified
in BCD: 1 to
6556. PLC
memory address
output to C+1.
Number of
matches cannot
be output to
DR0)

Yes (Table
length specified
in BCD: 1 to
9999. PLC
memory address
output to IR0.
Number of
matches cannot
be output to
DR0)

Yes (Table
length specified
in BCD: 1 to
6556. PLC
memory address
output to C+1.
Number of
matches cannot
be output to
DR0)

FRAME CHECK-
SUM

FCS Yes Yes Yes No Yes

SUM SUM Yes (Same as
C200HX/HG/
HE: Sum possi-
ble for bytes as
well as words.)

Yes (Same as
C200HX/HG/
HE: Sum possi-
ble for bytes as
well as words.)

Yes (Sum possi-
ble for bytes as
well as words.)

Yes (Sum possi-
ble for words
only.)

Yes (Sum possi-
ble for bytes as
well as words.)

SWAP BYTES SWAP Yes (Can be
used for data
communications
and other appli-
cations.)

Yes (Can be
used for data
communications
and other appli-
cations.)

No No No

DIMENSION
RECORD TABLE:

DIM Yes Yes No No No

SET RECORD
LOCATION

SETR Yes Yes No No No

GET RECORD
LOCATION

GETR Yes Yes No No No

Data Con-
trol Instruc-
tions

SCALING SCL Yes Yes Yes No Yes

SCALING 2 SCL2 Yes Yes No No Yes

SCALING 3 SCL3 Yes Yes No No Yes

PID CONTROL PID Yes (Output can
be switched
between 0% and
50% when PV =
SV. PID and
sampling period
specified in
binary.)

Yes (Output can
be switched
between 0% and
50% when PV =
SV. PID and
sampling period
specified in
binary.)

Yes (PID and
sampling period
specified in
BCD)

Yes (PID and
sampling period
specified in
BCD) (*1)

Yes (PID and
sampling period
specified in
BCD)

PID CONTROL
WITH AUTO-
TUNIG

PIDAT CJ1: No
CJ1-H: Yes
CJ1M: Yes

CS1: No
CS1-H: Yes

No No No

LIMIT CONTROL LMT Yes Yes No Yes (*1) No

DEAD BAND CON-
TROL

BAND Yes Yes No Yes (*1) No

DEAD ZONE CON-
TROL

ZONE Yes Yes No Yes (*1) No

AVERAGE AVG Yes (Number of
scans specified
in binary)

Yes (Number of
scans specified
in binary)

Yes (Number of
scans specified
in BCD)

No Yes (Number of
scans specified
in BCD)

Item Mne-
monic

CJ Series CS Series C200HX/HG/HE CVM1/CV
Series

CQM1H
342

PLC Comparison Charts Appendix A
Subrou-
tines
Instructions

SUBROUTINE
CALL/SUBROU-
TINE ENTRY/SUB-
ROUTINE
RETURN

SBS,
SBN,
RET

Yes (Subroutine
number speci-
fied in BCD: 0 to
1023)

Yes (Subroutine
number speci-
fied in BCD: 0 to
1023)

Yes (Subroutine
number speci-
fied in BCD: 0 to
255)

Yes (Subroutine
number speci-
fied in BCD: 0 to
999)

Yes (Subroutine
number speci-
fied in BCD: 0 to
255)

MACRO MCRO Yes (Subroutine
number speci-
fied in BCD: 0 to
1023)

Yes (Subroutine
number speci-
fied in BCD: 0 to
1023)

Yes (Subroutine
number speci-
fied in BCD: 0 to
255)

Yes (Subroutine
number speci-
fied in BCD: 0 to
999) (*1)

Yes (Subroutine
number speci-
fied in BCD: 0 to
255)

Global Subroutine
Instructions

GSBS,
GSBN,
RET

CJ1: No
CJ1-H: Yes
CJ1M: Yes

CS1: No
CS1-H: Yes

No No No

Interrupt
Control
Instructions

SET INTERRUPT
MASK

MSKS Yes Yes No (All interrupt
processing per-
formed with INT)

Yes No (All interrupt
processing per-
formed with INT)

CLEAR INTER-
RUPT

CLI Yes Yes No Yes No

READ INTER-
RUPT MASK:

MSKR Yes Yes No Yes No

DISABLE INTER-
RUPTS

DI Yes Yes No No No

ENABLE INTER-
RUPTS

EI Yes Yes No No No

ENABLE TIMER STIM No No No No Yes

High-speed
Counter/
Pulse Out-
put Instruc-
tions

MODE CONTROL INI Yes (*5) No No No Yes

PRESENT VALUE
READ

PRV Yes (*5) No No No Yes

SET COMPARI-
SON TABLE

CTBL Yes (*5) No No No Yes

SET PULSES PULS Yes (*5) No No No Yes

SET FREQUENCY SPED Yes (*5) No No No Yes

ACCELERATION
CONTROL

ACC Yes (*5) No No No Yes

POSITION CON-
TROL

PLS2 Yes (*5) No No No Yes

ORIGIN SEARCH ORG Yes (*5) No No No No

PWM OUTPUT PWM Yes (*5) No No No Yes

Step
Instructions

STEP DEFINE and
STEP START

STEP/
SNXT

Yes Yes Yes Yes Yes

Basic I/O
Unit
Instructions

I/O REFRESH IORF Yes Yes (Used for
C200H Group-2
High-density I/O
Units and Spe-
cial I/O Units as
well. Includes
functionality of
GROUP-2
HIGH-DENSITY
I/O REFRESH
(MPRF))

Yes (Used for
C200H Group-2
High-density I/O
Units and Spe-
cial I/O Units as
well.)

Yes Yes

7-SEGMENT
DECODER

SDEC Yes Yes Yes Yes Yes

GROUP-2 HIGH-
DENSITY I/O
REFRESH

MPRF No No Yes No No

TEN KEY INPUT TKY No No Yes No Yes

HEXADECIMAL
KEY INPUT

HKY No No Yes No Yes

DIGITAL SWITCH
INPUT

DSW No No Yes No Yes

MATRIX INPUT MTR No No Yes No No

7-SEGMENT DIS-
PLAY OUTPUT

7SEG No No Yes No Yes

Item Mne-
monic

CJ Series CS Series C200HX/HG/HE CVM1/CV
Series

CQM1H
343

PLC Comparison Charts Appendix A
Special I/O
Unit
Instructions

SPECIAL I/O UNIT
READ and SPE-
CIAL I/0 UNIT
WRITE
(I/O READ and I/O
WRITE)

IORD/
IOWR
(READ/
WRIT)

IORD/IOWR (Up
to 96 Units. Will
not be used to
send FINS com-
mands any
more.

IORD/IOWR (Up
to 96 Units. Will
not be used to
send FINS com-
mands any
more.

IORD/IOWR READ/WRIT No

I/O READ 2 and I/
O WRITE 2

RD2/
WR2

No No No Yes (*1) No

Text String
Processing
Instructions

MOV STRING MOV$ Yes Yes No No No

CONCATENATE
STRING

+$ Yes Yes No No No

GET STRING
LEFT

LEFT$ Yes Yes No No No

GET STRING
RIGHT

RGHT$ Yes Yes No No No

GET STRING MID-
DLE

MID$ Yes Yes No No No

FIND IN STRING FIND$ Yes Yes No No No

STRING LENGTH LEN$ Yes Yes No No No

REPLACE IN
STRING

RPLC$ Yes Yes No No No

DELETE STRING DEL$ Yes Yes No No No

EXCHANGE
STRING

XCHG$ Yes Yes No No No

CLEAR STRING: CLR$ Yes Yes No No No

INSERT INTO
STRING

INS$ Yes Yes No No No

Item Mne-
monic

CJ Series CS Series C200HX/HG/HE CVM1/CV
Series

CQM1H
344

PLC Comparison Charts Appendix A
Serial Com-
munica-
tions
Instructions

RECEIVE RXD Yes (Number of
stored bytes
specified in
binary) (Only
used for RS-
232C port in
CPU Unit. Can-
not be used for
Serial Communi-
cations Unit, or
CPU Unit’s
peripheral port)

Yes (Number of
stored bytes
specified in
binary) (Only
used for RS-
232C port in
CPU Unit. Can-
not be used for
Inner Board,
Serial Communi-
cations Unit, or
CPU Unit’s
peripheral port)

Yes (Number of
stored bytes
specified in
BCD) (Used for
peripheral port,
RS-232C port or
Communica-
tions Board in
CPU Unit.)

No Yes (Number of
stored bytes
specified in
BCD) (Used for
peripheral port,
RS-232C port or
Communica-
tions Board in
CPU Unit.)

TRANSMIT TXD Yes (Number of
stored bytes
specified in
binary) (Only
used for RS-
232C port in
CPU Unit. Can-
not be used for
Serial Communi-
cations Unit or
CPU Unit’s
peripheral port)
(Unsolicited
communications
not possible
using Host Link
EX command)

Yes (Number of
stored bytes
specified in
binary) (Only
used for RS-
232C port in
CPU Unit. Can-
not be used for
Inner Board,
Serial Communi-
cations Unit, or
CPU Unit’s
peripheral port)
(Unsolicited
communications
not possible
using Host Link
EX command)

Yes (Number of
stored bytes
specified in
BCD) (Used for
peripheral port,
RS-232C port or
Communica-
tions Board in
CPU Unit.)
(Unsolicited
communica-
tions possible
using Host Link
EX command)

No Yes (Number of
stored bytes
specified in
BCD) (Used for
peripheral port,
RS-232C port or
Communica-
tions Board in
CPU Unit.)
(Unsolicited
communica-
tions possible
using Host Link
EX command)

CHANGE SERIAL
PORT SETUP

STUP Yes (10 words
set)
Can be used for
Serial Communi-
cations Unit.

Yes (10 words
set)
Can be used for
Serial Communi-
cations Unit.

Yes (5 words
set)

No Yes (5 words
set)

PROTOCOL
MACRO

PMCR Yes (Sequence
number speci-
fied in binary.
Four operands.
Can specify des-
tination unit
address and
Serial Port num-
ber.)

Yes (Sequence
number speci-
fied in binary.
Four operands.
Can specify des-
tination unit
address and
Serial Port num-
ber.)

Yes (Sequence
number speci-
fied in BCD.
Three oper-
ands.)

No Yes (Sequence
number speci-
fied in BCD.
Three oper-
ands.)

PCMCIA CARD
MACRO

CMCR No No Yes No No

Network
Instructions

NETWORK SEND/
NETWORK
RECEIVE

SEND/
RECV

Yes (Can be
used for host
computer via
Host Link con-
nections. Cannot
be used for
Serial Communi-
cations Units or
CPU Unit’s RS-
232C port.)

Yes (Can be
used for host
computer via
Host Link con-
nections. Cannot
be used for
Serial Communi-
cations Units,
CPU Unit’s RS-
232C port, or
Inner Board.)

Yes (Cannot be
used for host
computer via
Host Link con-
nections.)

Yes (Can be
used for host
computer via
Host Link con-
nections.)

Yes (Cannot be
used for host
computer via
Host Link con-
nections.)

DELIVER COM-
MAND

CMND Yes (Used for
host computer
via Host Link
connections.
Cannot be used
for Serial Com-
munications
Units or CPU
Unit’s RS-232C
port.)

Yes (Used for
host computer
via Host Link
connections.
Cannot be used
for Serial Com-
munications
Units, CPU
Unit’s RS-232C
port, or Inner
Board.)

No Yes (Can be
used for host
computer via
Host Link con-
nections.)

Yes (Cannot be
used for host
computer via
Host Link con-
nections.)

File Mem-
ory Instruc-
tions

READ DATA FILE/
WRITE DATA FILE

FREAD/
FWRIT

Yes Yes No Yes (FILR/FILW) No

READ PROGRAM
FILE

FILP No No No Yes No

CHANGE STEP
PROGRAM

FLSP No No No Yes No

Item Mne-
monic

CJ Series CS Series C200HX/HG/HE CVM1/CV
Series

CQM1H
345

PLC Comparison Charts Appendix A
Display
Instructions

DISPLAY MES-
SAGE

MSG Yes (Messages
ended by NUL)

Yes (Messages
ended by NUL)

Yes (Messages
ended by CR)

Yes (Messages
ended by CR)

Yes (Messages
ended by CR)

DISPLAY LONG
MESSAGE

LMSG No No Yes (Messages
ended by CR)

No No

I/O DISPLAY IODP No No No Yes No

TERMINAL MODE TERM No No Yes No No

Clock
Instructions

CALENDAR ADD CADD Yes Yes No Yes No

CALENDAR SUB-
TRACT

CSUB Yes Yes No Yes No

HOURS TO SEC-
ONDS

SEC Yes Yes Yes Yes Yes

SECONDS TO
HOURS

HMS Yes Yes Yes Yes Yes

CLOCK ADJUST-
MENT

DATE Yes Yes No Yes (*1) No

Debugging
Instructions

TRACE MEMORY
SAMPLING

TRSM Yes Yes Yes Yes Yes

MARK TRACE MARK No No No Yes (Mark num-
ber specified in
BCD)

No

Failure
Diagnosis
Instructions

FAILURE ALARM/
SEVERE FAIL-
URE ALARM

FAL/
FALS

Yes (Messages
ended by NUL,
text strings
stored in order of
leftmost to right-
most byte and
then rightmost to
leftmost word.
FAL number
specified in
binary.)

Yes (Messages
ended by NUL,
text strings
stored in order of
leftmost to right-
most byte and
then rightmost to
leftmost word.
FAL number
specified in
binary.)

Yes (Messages
ended by CR,
text strings
stored in order
of leftmost to
rightmost byte
and then right-
most to leftmost
word. FAL num-
ber specified in
BCD.)

Yes (Messages
ended by CR,
text strings
stored in order of
leftmost to right-
most byte and
then rightmost to
leftmost word.
FAL number
specified in
BCD.)

Yes (Messages
ended by CR,
text strings
stored in order
of leftmost to
rightmost byte
and then right-
most to leftmost
word. FAL num-
ber specified in
BCD.)

FAILURE POINT
DETECTION

FPD Yes (Messages
ended by NUL,
text strings
stored in order of
leftmost to right-
most byte and
then rightmost to
leftmost word.
FAL number
specified in
binary.)

Yes (Messages
ended by NUL,
text strings
stored in order of
leftmost to right-
most byte and
then rightmost to
leftmost word.
FAL number
specified in
binary.)

Yes (Messages
ended by CR,
text strings
stored in order
of leftmost to
rightmost byte
and then right-
most to leftmost
word. FAL num-
ber specified in
BCD.)

Yes (Messages
ended by CR,
text strings
stored in order of
leftmost to right-
most byte and
then rightmost to
leftmost word.
FAL number
specified in
BCD.) (*1)

Yes (Messages
ended by CR,
text strings
stored in order
of leftmost to
rightmost byte
and then right-
most to leftmost
word. FAL num-
ber specified in
BCD.)

Other
Instructions

SET CARRY/
CLEAR CARRY

STC/
CLC

Yes Yes Yes Yes Yes

LOAD FLAGS/
SAVE FLAGS

CCL,
CCS

CJ1: No
CJ1-H: Yes
CJ1M: Yes

CS1: No
CS1-H: Yes

No Yes No

EXTEND MAXI-
MUM CYCLE TIME

WDT Yes Yes Yes Yes (*1) Yes

CYCLE TIME SCAN No No Yes No No

LOAD REGISTER/
SAVE REGISTER

REGL,
REGS

No No No Yes No

SELECT EM
BANK:

EMBC Yes Yes Yes Yes No

EXPANSION DM
READ

XDMR No No Yes No No

INDIRECT EM
ADDRESSING

IEMS No No Yes No No

ENABLE ACCESS/
DISABLE ACCESS

IOSP,
IORS

No CS1: No
CS1-H: Yes

No Yes No

CV-CS Address
Conversion
Instructions

FRMCV
TOCV

CJ1: No
CJ1-H: Yes
CJ1M: Yes

CS1: No
CS1-H: Yes

No No No

Item Mne-
monic

CJ Series CS Series C200HX/HG/HE CVM1/CV
Series

CQM1H
346

PLC Comparison Charts Appendix A
Note *1: Supported only by CVM1 (V2).
*2: Supported only by CPU@@-Z models.
*3: Continuation on same program run supported by CV1M version 2,
*4: Except for CS1 and CJ1 CPU Units.
*5: CJ1M CPU Units with built-in I/O only. Some operands differ from those used by the CQM1H.

Block Programming Instructions BPRG/
BEND,
IF/
ELSE/
IEND,
WAIT,
EXIT,
LOOP/
LEND,
BPPS/
BPRS,
TIMW,
CNTW,
TMHW

Yes Yes No Yes (*1) No

Task Con-
trol Instruc-
tions

TASK ON/TASK
OFF

TKON/
TKOF

Yes Yes No No No

Item Mne-
monic

CJ Series CS Series C200HX/HG/HE CVM1/CV
Series

CQM1H
347

Appendix B
Changes from Previous Host Link Systems

There are differences between Host Link Systems created using the CS/CJ-series Serial Communications
Boards (CS Series only) and Unit in comparison to Host Link Systems created with Host Link Units and CPU
Units in other PLC product series. These differences are described in this sections.

RS-232C Ports
Take the following differences into consideration when changing from an existing Host Link System to one
using an RS-232C port on a CS/CJ-series CPU Unit, Serial Communications Boards (CS Series only), or
Serial Communications Unit (CS1H/G-CPU@@ RS-232C port, CS1W-SCU21 ports, CS1W-SCB21 ports,
CS1W-SCB41 port 1, or CJ1W-SCU41 port 2).

Previous
products

Model number Changes required for CS/CJ-series product

Wiring Other

C-series Host
Link Units

3G2A5-LK201-E

C500-LK203
3G2A6-LK201-E

The connector has been
changed from a 25-pin to a 9-
pin connector.
The CS/CJ-series products
do not support the ST1, ST2,
and RT signals and wiring
them is not required.

The following changes are necessary for
systems that sync with ST1, ST2, and RT.
Synchronized transfers will no longer be possi-
ble.

Full-duplex transmissions will be possible with
the CS/CJ-series product, but the host com-
puter’s communications program, hardware, or
both will need to be altered.
The following changes are necessary for
systems that did not sync with ST1, ST2,
and RT.
It may be possible to use the host computer
programs without alteration as long as the
same communications settings (e.g., baud rate)
are used. It may be necessary, however, to
change programs to allow for different text
lengths in frames or different CS/CJ command
specifications. (See note.)

C200H-LK201 The connector has been
changed from a 25-pin to a 9-
pin connector.

It may be possible to use the host computer
programs without alteration as long as the
same communications settings (e.g., baud rate)
are used. It may be necessary, however, to
change programs to allow for different text
lengths in frames or different CS/CJ command
specifications. (See note.)

C-series CPU
Units

SRM1
CPM1

CPM1A
CQM1-CPU@@-E
C200HS-CPU@@-E

C200HX/HG/HE-
CPU@@-E
C200HW-COM@@-E

No changes have been made
in wiring.

It may be possible to use the host computer
programs without alteration as long as the
same communications settings (e.g., baud rate)
are used. It may be necessary, however, to
change programs to allow for different CS/CJ
command specifications.
349

Changes from Previous Host Link Systems Appendix B
Note The number of words that can be read and written per frame (i.e., the text lengths) when using C-mode
commands is different for C-series Host Link Units and CS/CJ-series Serial Communications Boards/
Units. A host computer program previously used for C-series Host Link Units may not function correctly if
used for CS/CJ-series PLCs. Check the host computer program before using it and make any correc-
tions required to handle different frame text lengths. Refer to the CS/CJ-series Communications Com-
mands Reference Manual (W342) for details.

RS-422A/485 Ports
Take the following differences into consideration when changing from an existing Host Link System to one
using an RS-422A/485 port on a CS-series Serial Communications Board (CS1W-SCB41 port 2) or a CJ-
series Serial Communications Unit (CJ1W-SCU41 port 1).

CVM1 or CV-
series CPU
Units

CVM1/CV-CPU@@-E No changes have been made
in wiring.

It may be possible to use the host computer
programs without alteration as long as the
same communications settings (e.g., baud rate)
are used. It may be necessary, however, to
change programs to allow for different CS/CJ
command specifications.

CVM1 or CV-
series Host Link
Unit

CV500-LK201 Port 1:
The connector has been
changed from a 25-pin to a 9-
pin connector.
Port 2 set for RS-232C:
The SG signal has been
changed from pin 7 to pin 9.

The following changes are necessary for
half-duplex transmissions that use CD.
Check the system for timing problems when
using SEND, RECV, or CMND to initiate com-
munications from the PLC or timing problems in
sending commands from the host computer. If
necessary, switch to full-duplex transmissions.
The following changes are necessary for
full-duplex transmissions that do not use
CD.
Half-duplex It may be possible to use the host
computer programs without alteration as long
as the same communications settings (e.g.,
baud rate) are used. It may be necessary, how-
ever, to change programs to allow for different
CS/CJ command specifications.

Previous
products

Model number Changes required for CS/CJ-series product

Wiring Other

C-series Host Link
Units

3G2A5-LK201-E
C200H-LK202

3G2A6-LK202-E

Wiring pins have been
changed as shown below.

SDA: Pin 9 to pin 1
SDB: Pin 5 to pin 2
RDA: Pin 6 to pin 6
RDB: Pin 1 to pin 8
SG: Pin 3 to

Not connected
FG: Pin 7 to pin

Connector hood

It may be possible to use the host computer
programs without alteration as long as the
same communications settings (e.g., baud
rate) are used. It may be necessary, however,
to change programs to allow for different text
lengths in frames or different CS/CJ com-
mand specifications. (See note.)

C200HX/HG/HE
Communications
Board

C200HW-COM@@-E No changes have been made
in wiring.

It may be possible to use the host computer
programs without alteration as long as the
same communications settings (e.g., baud
rate) are used. It may be necessary, however,
to change programs to allow for different CS/
CJ command specifications.

Previous
products

Model number Changes required for CS/CJ-series product

Wiring Other
350

Changes from Previous Host Link Systems Appendix B
Note The number of words that can be read and written per frame (i.e., the text lengths) when using C-mode
commands is different for C-series Host Link Units and CS/CJ-series Serial Communications Boards/
Units. A host computer program previously used for C-series Host Link Units may not function correctly if
used for CS/CJ-series PLCs. Check the host computer program before using it and make any correc-
tions required to handle different frame text lengths. Refer to the CS/CJ-series Communications Com-
mands Reference Manual (W342) for details.

CVM1 or CV-
series CPU Units

CVM1/CV-CPU@@-E No changes have been made
in wiring.

It may be possible to use the host computer
programs without alteration as long as the
same communications settings (e.g., baud
rate) are used. It may be necessary, however,
to change programs to allow for different CS/
CJ command specifications.

CVM1 or CV-
series Host Link
Unit

CV500-LK201

Previous
products

Model number Changes required for CS/CJ-series product

Wiring Other
351

Index

�
addressing

index registers, 252
indirect addresses, 26–27
memory addresses, 24
operands, 25
See also index registers

alarms
user-programmed alarms, 297

applications
file memory, 197
precautions, xiv

ASCII characters, 29

automatic transfer at startup, 189, 214

#
backing up data, 293

Basic I/O Units
Basic I/O Unit instructions, 129
input response time, 314

battery
compartment, 2
installation, 2

BCD data, 30

block programs, 22, 59, 62
block programming instructions, 138
relationship to tasks, 167

�
C200H Communications Boards, 350

C200HX/HG/HE Communications Board
changes in communications specifications, 350

C200HX/HG/HE PLCs
comparison, 327

Carry Flag, 58

clearing memory, 4
clock, 289

clock instructions, 134
setting the clock, 5

communications
messages, 267
no-protocol, 268
See also serial communications
serial communications instructions, 130

comparison
previous products, 350

complete link method, 271

Condition Flags, 54
operation in tasks, 162

constants
operands, 28

counters
refresh mode, 276

CPU Unit
basic operation, 152
capacities, 41
internal structure, 6
operation, 1

C-series Host Link Units
changes in communications specifications, 349

C-series Units
changes in communications specifications, 350

CVM1 Units
changes in communications specifications, 350–351

CV-series PLCs
comparison, 327

CV-series Units
changes in communications specifications, 350–351

CX-Programmer, 20
file memory, 201

cycle time
minimum cycle time, 235
monitoring, 236
setting, 236
task execution time, 18

cyclic refreshing, 38, 238

cyclic tasks, 151, 154
Disabled status (INI), 157
READY status, 157
RUN status, 157
status, 157
WAIT status, 157

'
data areas

addressing, 24

data files, 197

data formats, 30

data tracing, 323

date
setting the clock, 5

dates
program and parameters, 291

debugging, 296, 318
debugging instructions, 135
failure diagnosis instructions, 136

DeviceNet
precaution, 297

diagnosis, 296

differentiated instructions, 36

directories, 191

down-differentiated instructions, 35
353

Index
�
EC Directives, xix

EM file memory, 184
initializing, 226
operations, 230
See also file memory

Equals Flag, 58

error log, 296

errors
access error, 65
error log, 296
failure point detection, 298
fatal, 67
illegal instruction error, 65
instruction processing error, 65
program input, 63
programming errors, 67
UM overflow error, 65
user-programmed errors, 297

executable status
description, 16

execution conditions
tasks, 156
variations, 34

external interrupts
tasks, 155, 169–171, 174

�
failure alarms, 297

failure point detection, 298

file memory, 183
accessing directories, 191
applications, 197, 226
file memory instructions, 133, 204
file names and file types, 188
functions, 183
manipulating files, 199
parameter files, 198
program files, 198

file names, 188

file types, 188

FINS commands
file memory, 202
list, 266

flags, 22
Condition Flags, 54

flash memory, 293

floating-point data
floating-point math instructions, 108

floating-point decimal, 31

force-resetting bits
debugging, 318

force-setting bits
debugging, 318

FOR-NEXT loop, 59

�
Greater Than Flag, 58

�
high-speed inputs, 237

Host Link commands, 264

Host Link communications, 263

Host Link Units
changes in communications specifications, 350

hot starting, 286

hot stopping, 286

(
I/O allocations

first word settings, 315

I/O interrupts
tasks, 154, 168–171

I/O memory, 6–7
addressing, 24
initializing, 10
tasks, 161

I/O refreshing, 38

I/O response time
CS/CJ Basic I/O Units, 314

immediate refreshing, 34, 38, 238

index registers, 27, 252

Initial Task Execution Flag, 163

initialization
EM file memory, 226
I/O memory, 10
Memory Cards, 226

installation
initial setup, 2, 5
precautions, xiv

instruction conditions
description, 21

instructions
Basic I/O Unit instructions, 129
basic instructions, 21
block programming instructions, 138
block programs, 62
clock instructions, 134
comparison instructions, 82
controlling tasks, 158
conversion instructions, 99
counter instructions, 78
data control instructions, 120
data movement instructions, 86
354

Index
data shift instructions, 89
debugging instructions, 135
decrement instructions, 93
differentiated instructions, 36
display instructions, 134
execution conditions, 34
failure diagnosis instructions, 136
file memory, 204
file memory instructions, 133
floating-point math instructions, 108
high-speed counter and pulse output instructions, 127
increment instructions, 93
index registers, 255
input and output instructions, 21, 23
input differentiation, 34
instruction conditions, 21
interrupt control instructions, 125
logic instructions, 105
loops, 22, 59
network instructions, 131
operands, 22
programming locations, 23
restrictions in tasks, 162
sequence control instructions, 75
sequence input instructions, 70
sequence output instructions, 72
serial communications instructions, 130
special math instructions, 107
step instructions, 128
subroutine instructions, 123
symbol math instructions, 94
table data processing instructions, 112, 116
task control instructions, 147
text string processing instructions, 144
timer instructions, 78
timing, 36
variations, 34

interlocks, 22, 37, 59

interrupt tasks, 151, 154, 168–179
precautions, 177
priority, 175
related flags and words, 176

interrupts, 237
disabling, 179
priority of interrupt tasks, 175
See also external interrupts

IOM Hold Bit, 287

IORF(097) refreshing, 40, 239
interrupt tasks, 178

��)
jumps, 37, 59

Less Than Flag, 58

loops
FOR/NEXT loops, 59

�
mathematics

floating-point math instructions, 108
special math instructions, 107
symbol math instructions, 94

maximum cycle time, 236

memory
block diagram of CPU Unit memory, 7
clearing, 4
See also file memory
See also I/O memory
See also user memory

Memory Cards, 7, 184
initializing, 226
operations, 228
precautions, 185

messages, 267

minimum (fixed) cycle time, 235

mnemonics, 42
inputting, 46

MONITOR mode
description, 9

monitoring
differential monitoring, 319
remote monitoring, 292

*
Negative Flag, 58

networks
network instructions, 131

no-protocol communications, 268

+
online editing, 320

operands
constants, 28
description, 22
specifying, 25
text strings, 28

operating environment
precautions, xiv

operating modes
description, 8
startup mode, 11

operation
basic operation, 152
CPU Unit, 1
debugging, 318
trial operation, 318

Output OFF Bit, 322

output OFF function, 297
355

Index
outputs
turning OFF, 297, 322

�
Parameter Area, 7

files, 198

Parameter Date, 291

peripheral servicing
priority servicing, 306

Peripheral Servicing Priority Mode, 306

PLC Setup, 7
PLCs

comparison, 327

Polled Units
settings, 274

Polling Unit
setting, 274

Polling Unit link method, 271

power flow
description, 21

power interrupts
disabling, 288

power OFF detection delay, 288

power OFF interrupts
tasks, 154, 168, 172–174

precautions, xi
applications, xiv
general, xii
I/O refreshing, 9
interrupt tasks, 177
operating environment, xiv
programming, 54
safety, xii

previous products
comparison, 350

program capacity, 41

program errors, 67

program files, 198

PROGRAM mode
description, 8–9

program structure, 42

program transfer, 318

programming, 19
basic concepts, 41
block programs, 22, 59

restrictions, 62
checking programs, 63
designing tasks, 166
errors, 63
examples, 49
instruction locations, 23
mnemonics, 42
power flow, 21
precautions, 54

program capacity, 41
program protection, 290
program structure, 12, 15, 42
programs and tasks, 12, 20
protecting the program, 290
remote programming, 292
restrictions, 44
See also block programs
step programming, 59

restrictions, 61
tasks and programs, 151
transferring the program, 318

Programming Consoles
file memory, 201

Programming Devices
file memory, 199
task operations, 180

programs
See also programming

,
range instructions, 258

read/write-protection, 291

record-table instructions, 258

refresh mode, 276
timers and counters, 276

refreshing
cyclic refreshing, 38, 238
I/O refreshing, 38, 238
immediate refreshing, 34, 38, 238
IORF(097), 40, 178, 239

refreshing data, 271

RS-232C ports
changes from previous products, 349

RS-422A/485 ports
changes from previous products, 350

RUN mode
description, 9

RUN output, 288

�
safety precautions, xii

scheduled interrupts
tasks, 154, 168, 171–172
usage as timer, 284

serial communications
functions, 261

Serial PLC Links, 270–271
allocated words, 273
PLC Setup, 274
related flags, 275

settings
See also switch settings
356

Index
startup settings, 286

setup
See also installation

signed binary data, 30

stack processing, 256

standby status
description, 16

startup
automatic file transfer, 189, 214
hot starting and stopping, 286

startup mode, 287

step programming, 59

subroutines, 59

!
table data

processing, 258

Task Error Flag, 164

Task Flags, 163

tasks, 12, 149
advantages, 150
creating tasks, 180
cyclic tasks, 151, 154
description, 14
designing, 166
examples, 164
execution, 160
execution conditions, 156
execution time, 18
features, 150
flags, 163
interrupt tasks, 151, 154, 169
introduction, 154
limitations, 162
operation of Condition Flags, 162
relationship to block programs, 167
See also cyclic tasks
See also interrupt tasks
status, 16
task control instructions, 147
task numbers, 160
timers, 161

text strings
operands, 28
text string processing instructions, 144

time
setting the clock, 5

timers, 276
creating with schedule interrupts, 284

trial operation, 318

�
Units

profiles, 292

unsigned binary data, 30

up-differentiated instructions, 34

user program, 6–7
See also programming

User Program Date, 291

�-.
write-protection, 290
357

359

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content
01 April 2001 Original production

02 October 2001 Added information on high-speed CS-series and high-speed CJ-series CPU Units (CS1G/H-
CPU@@H and CJ1G/H-CPU@@H)) throughout the manual.

03 July 2002 Information on CJ1M CPU Units added throughout.
PC changed to PLC for “Programmable Controller.”
Other changes are as follows:
Pages xvi and xviii: Caution added.
Page xix: Item 2 at bottom of page changed.
Page 28: Description for text string changed.
Page 167: Programming example changed.
Pages 168, 169, 265, and 266: Information added on DC power supplies.
Page 179: Precautions added on Memory Cards.
Page 229: Illustration changed.
Page 262: Information added on timer/counter refresh method.
Page 273: Precaution added on DeviceNet.
Page 301: Units corrected in processing speeds.
Page 304: Interrupt response time corrected.
Page 320: CJ1 support for IOSP/IORS changed.

Cat. No. W394-E1-03

Revision code

Revision History
360

OMRON CORPORATION
FA Systems Division H.Q.
66 Matsumoto
Mishima-city, Shizuoka 411-8511
Japan
Tel: (81)55-977-9181/Fax: (81)55-977-9045

Regional Headquarters

OMRON EUROPE B.V.
Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMRON ELECTRONICS LLC
1 East Commerce Drive, Schaumburg, IL 60173
U.S.A.
Tel: (1)847-843-7900/Fax: (1)847-843-8568

OMRON ASIA PACIFIC PTE. LTD.
83 Clemenceau Avenue,
#11-01, UE Square,
Singapore 239920
Tel: (65)6835-3011/Fax: (65)6835-2711

Cat. No.
Authorized Distributor:

 W394-E1-03 Note: Specifications subject to change without notice Printed in Japan

	About this Manual:
	PRECAUTIONS
	1 Intended Audience
	2 General Precautions
	3 Safety Precautions
	4 Operating Environment Precautions
	5 Application Precautions
	6 Conformance to EC Directives
	6-1 Applicable Directives
	6-2 Concepts
	6-3 Conformance to EC Directives
	6-4 Relay Output Noise Reduction Methods

	SECTION 1 CPU Unit Operation
	1-1 Initial Setup (CS1 CPU Units Only)
	1-2 Using the Internal Clock (CS1 CPU Units Only)
	1-3 Internal Structure of the CPU Unit
	1-3-1 Overview
	1-3-2 Block Diagram of CPU Unit Memory

	1-4 Operating Modes
	1-4-1 Description of Operating Modes
	1-4-2 Initialization of I/O Memory
	1-4-3 Startup Mode

	1-5 Programs and Tasks
	1-6 Description of Tasks

	SECTION 2 Programming
	2-1 Basic Concepts
	2-1-1 Programs and Tasks
	2-1-2 Basic Information on Instructions
	2-1-3 Instruction Location and Execution Conditions
	2-1-4 Addressing I/O Memory Areas
	2-1-5 Specifying Operands
	2-1-6 Data Formats
	2-1-7 Instruction Variations
	2-1-8 Execution Conditions
	2-1-9 I/O Instruction Timing
	2-1-10 Refresh Timing
	2-1-11 Program Capacity
	2-1-12 Basic Ladder Programming Concepts
	2-1-13 Inputting Mnemonics
	2-1-14 Program Examples

	2-2 Precautions
	2-2-1 Condition Flags
	2-2-2 Special Program Sections

	2-3 Checking Programs
	2-3-1 Errors during Programming Device Input
	2-3-2 Program Checks with the CX-Programmer
	2-3-3 Program Execution Check
	2-3-4 Checking Fatal Errors

	SECTION 3 Instruction Functions
	3-1 Sequence Input Instructions
	3-2 Sequence Output Instructions
	3-3 Sequence Control Instructions
	3-4 Timer and Counter Instructions
	3-5 Comparison Instructions
	3-6 Data Movement Instructions
	3-7 Data Shift Instructions
	3-8 Increment/Decrement Instructions
	3-9 Symbol Math Instructions
	3-10 Conversion Instructions
	3-11 Logic Instructions
	3-12 Special Math Instructions
	3-13 Floating-point Math Instructions
	3-14 Double-precision Floating-point Instructions (CS1-H, CJ1- H, or CJ1M Only)
	3-15 Table Data Processing Instructions
	3-16 Data Control Instructions
	3-17 Subroutine Instructions
	3-18 Interrupt Control Instructions
	3-19 High-speed Counter and Pulse Output Instructions (CJ1M- CPU22/23 Only)
	3-20 Step Instructions
	3-21 Basic I/O Unit Instructions
	3-22 Serial Communications Instructions
	3-23 Network Instructions
	3-24 File Memory Instructions
	3-25 Display Instructions
	3-26 Clock Instructions
	3-27 Debugging Instructions
	3-28 Failure Diagnosis Instructions
	3-29 Other Instructions
	3-30 Block Programming Instructions
	3-31 Text String Processing Instructions
	3-32 Task Control Instructions

	SECTION 4 Tasks
	4-1 Task Features
	4-1-1 Overview
	4-1-2 Tasks and Programs
	4-1-3 Basic CPU Unit Operation
	4-1-4 Types of Tasks
	4-1-5 Task Execution Conditions and Settings
	4-1-6 Cyclic Task Status
	4-1-7 Status Transitions

	4-2 Using Tasks
	4-2-1 TASK ON and TASK OFF
	4-2-2 Task Instruction Limitations
	4-2-3 Flags Related to Tasks
	4-2-4 Designing Tasks
	4-2-5 Global Subroutines

	4-3 Interrupt Tasks
	4-3-1 Types of Interrupt Tasks
	4-3-2 Interrupt Task Priority
	4-3-3 Interrupt Task Flags and Words
	4-3-4 Application Precautions

	4-4 Programming Device Operations for Tasks
	4-4-1 Using Multiple Cyclic Tasks
	4-4-2 Programming Device Operations

	SECTION 5 File Memory Functions
	5-1 File Memory
	5-1-1 Types of File Memory
	5-1-2 File Data
	5-1-3 Files
	5-1-4 Description of File Operating Procedures
	5-1-5 Applications

	5-2 Manipulating Files
	5-2-1 Programming Devices (Including Programming Consoles)
	5-2-2 FINS Commands
	5-2-3 FREAD(700), FWRIT(701), and CMND(490)
	5-2-4 Replacement of the Entire Program During Operation
	5-2-5 Automatic Transfer at Startup
	5-2-6 Simple Backup Function

	5-3 Using File Memory
	5-3-1 Initializing Media
	5-3-2 Operating Procedures for Memory Cards
	5-3-3 Operating Procedures for EM File Memory

	SECTION 6 Advanced Functions
	6-1 Cycle Time/High-speed Processing
	6-1-1 Minimum Cycle Time
	6-1-2 Maximum Cycle Time (Watch Cycle Time)
	6-1-3 Cycle Time Monitoring
	6-1-4 High-speed Inputs
	6-1-5 Interrupt Functions
	6-1-6 I/O Refreshing Methods
	6-1-7 Disabling Special I/O Unit Cyclic Refreshing
	6-1-8 Improving Refresh Response for CPU Bus Unit Data
	6-1-9 Maximum Data Link I/O Response Time
	6-1-10 Background Execution
	6-1-11 Sharing Index and Data Registers between Tasks

	6-2 Index Registers
	6-2-1 What Are Index Registers?
	6-2-2 Using Index Registers
	6-2-3 Processing Related to Index Registers

	6-3 Serial Communications
	6-3-1 Host Link Communications
	6-3-2 No-protocol Communications
	6-3-3 NT Link (1:N Mode)
	6-3-4 Serial PLC Links (CJ1M CPU Units Only)

	6-4 Changing the Timer/Counter PV Refresh Mode
	6-4-1 Overview
	6-4-2 Functional Specifications
	6-4-3 BCD Mode/Binary Mode Selection and Confirmation
	6-4-4 BCD Mode/Binary Mode Mnemonics and Data
	6-4-5 Restrictions
	6-4-6 Instructions and Operands

	6-5 Using a Scheduled Interrupt as a High-precision Timer (CJ1M Only)
	6-5-1 Setting the Scheduled Interrupt to Units of 0.1 ms
	6-5-2 Specifying a Reset Start with MSKS(690)
	6-5-3 Reading the Internal Timer PV with MSKR(692)

	6-6 Startup Settings and Maintenance
	6-6-1 Hot Start/Hot Stop Functions
	6-6-2 Startup Mode Setting
	6-6-3 RUN Output
	6-6-4 Power OFF Detection Delay Setting
	6-6-5 Disabling Power OFF Interrupts
	6-6-6 Clock Functions
	6-6-7 Program Protection
	6-6-8 Remote Programming and Monitoring
	6-6-9 Unit Profiles
	6-6-10 Flash Memory
	6-6-11 Startup Condition Settings

	6-7 Diagnostic Functions
	6-7-1 Error Log
	6-7-2 Output OFF Function
	6-7-3 Failure Alarm Functions
	6-7-4 Failure Point Detection
	6-7-5 Simulating System Errors
	6-7-6 Disabling Error Log Storage of User-defined FAL Errors

	6-8 CPU Processing Modes
	6-8-1 CPU Processing Modes
	6-8-2 Parallel Processing Mode and Minimum Cycle Times
	6-8-3 Data Concurrency in Parallel Processing with Asynchronous Memory Access

	6-9 Peripheral Servicing Priority Mode
	6-9-1 Peripheral Servicing Priority Mode
	6-9-2 Temporarily Disabling Priority Mode Servicing

	6-10 Battery-free Operation
	6-11 Other Functions
	6-11-1 I/O Response Time Settings
	6-11-2 I/O Area Allocation

	SECTION 7 Program Transfer, Trial Operation, and Debugging
	7-1 Program Transfer
	7-2 Trial Operation and Debugging
	7-2-1 Forced Set/Reset
	7-2-2 Differential Monitoring
	7-2-3 Online Editing
	7-2-4 Tracing Data

	Appendix A PLC Comparison Charts: CJ-series,�CS-series, C200HG/HE/HX, CQM1H, CVM1, and CV-series ...
	Appendix B Changes from Previous Host Link Systems
	Index
	Revision History

